A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium


An aptamer-based assay is described for the determination of Salmonella typhimurium (S. typh). Carboxymethyl chitosan was loaded with amino-modified aptamer against S. typh, and then adsorbed on gold nanoparticles by electrostatic interaction to form a composite that acts as the molecular recognition element. In the presence of S. typh, it will be bound by the aptamer, and this changes the structure of the recognition element. On addition of salt solution, the gold nanoparticles agglomerate so that the color of the solution changes from red to blue. S. typh can be detected via measurement of the absorbance at 550 nm. Absorbance increases linearly with the logarithm of the S. typh concentration in the range from 100 to 109 cfu·mL−1. The limit of detection is 16 cfu·mL−1. The specificity and practicability of the assay were evaluated. The recoveries of S. typh from spiked milk samples are between 92.4 and 97.2%. The analytical results are basically consistent with those of a plate counting method.

Schematic representation of the colorimetric assay for Salmonella typhimuium (S. typh) using carboxymethyl chitosan (CMCS)-aptamer (Apt)-gold nanoparticles (AuNPs) composites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Dos Santos AMP, Ferrari RG, Conte-Junior CA (2018) Virulence factors in Salmonella Typhimurium: the sagacity of a bacterium. Curr Microbiol 284(18):1510–1514

    Google Scholar 

  2. 2.

    Pang L, Zhang Z, Xu J (2011) Surveillance of foodborne disease outbreaks in China in 2006—2010. Chin J Food Hygi 23:560–563

  3. 3.

    Hu Y (2010) Investigation information for outbreak of Salmonella Typhimurium infection in United States from 2008 to 2009. MPM 37(10):1964–1965

    Google Scholar 

  4. 4.

    Sharma TK, Bruno JG, Dhiman A (2017) ABCs of DNA aptamer and related assay development. Biotechnol Adv 35(2):275–301

    CAS  Article  Google Scholar 

  5. 5.

    Ruscito A, Smith M, GouDreau DN, Derosa MC (2016) Current status and future prospects for aptamer-based mycotoxin detection. J AOAC Int 99(4):865–877

    CAS  Article  Google Scholar 

  6. 6.

    Mondal B, Ramlal S, Lavu PSR, Murali HS, Batra HV (2015) A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets. Appl Microbiol Biot 99(22):9791–9803

  7. 7.

    Moon J, Kim G, Park SB, Lim J, Mo C (2015) Comparison of whole-cell SELEX methods for the identification of Staphylococcus Aureus-specific DNA aptamers. Sensors 15(4):8884–8897

    CAS  Article  Google Scholar 

  8. 8.

    Wu P, Huang RX, Li GY, He YY, Chen CM, Xiao W, Ding P (2018) Optimization of synthesis and modification of ZnSe/ZnS quantum dots for fluorescence detection of Escherichia coil. J Nanosci Nanotechnol 18:3654–3659

    CAS  Article  Google Scholar 

  9. 9.

    Hasanzadeh M, Shadjou N, Guardia MDL (2017) Aptamer-based assay of biomolecules: recent advances inelectro-analytical approach. Trac-trend Anal Chem 89(12):119–132

  10. 10.

    Sharma A, Goud KY, Hayat A, Bhand S, Marty JL (2017) Recent advances in electrochemical-based sensing platforms for aflatoxins detection. Chemosensors 5(1):10001–10016

    Google Scholar 

  11. 11.

    Cheng KY, Zhang JG, Zhang LP, Wang L, Chen HQ (2017) Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2+-doped NaYF4:Yb, tm upconverting nanoparticles to gold nanorods. Spectrochim Acta A 171(12):168–173

    CAS  Article  Google Scholar 

  12. 12.

    Liu ZP, Su XG (2017) A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori. Biosens Bioelectron 87(61):66–72

    CAS  Article  Google Scholar 

  13. 13.

    Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 68(24):149–155

    CAS  Article  Google Scholar 

  14. 14.

    Zhang P, Liu H, Ma SZ, Men S, Li QZ, Yang X, Wang HN, Zhang AY (2016) A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand displacement-driven assembly of G-quadruplex DNA. Biosens Bioelectron 80(12):538–542

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhang H, Ma XY, Liu Y, Duan N, Wu SJ, Wang ZP, Xu BC (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877

    CAS  Article  Google Scholar 

  16. 16.

    Huang Y, Cui L, Xue Y, Zhang S, Zhu N, Liang J, Li G (2017) Ultrasensitive cholesterol biosensor based on enzymatic silver deposition on gold nanoparticles modified screen-printed carbon electrode. Mat Sci Eng C-Mater 77:1–8

  17. 17.

    Kim YS, Raston NHA, Gu MB (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19

    Article  Google Scholar 

  18. 18.

    Lu L, Li K, Mao YH, Qu H, Yao B, Zhong WW, Ma B, Wang ZY (2017) Gold-chrysophanol nanoparticles suppress human prostate cancer progression through inactivating AKT expression and inducing apoptosis and ROS generation in vitro and in vivo. Int J Oncol 51:1089–1103

    CAS  Article  Google Scholar 

  19. 19.

    Liu YS, Du WP, Zheng KY, Fu LL, Chen M (2005) Comparative study on rapid dot-immunogold staining and two immunogold silver staining assays for diagnosing schistosomiasis japonica. Se Asian J Trop Med 36(1):79–82

  20. 20.

    Tanaka M, Saito Y, Misu H (2016) Development of a sol particle homogeneous immunoassay for measuring full-length selenoprotein pin human serum. J Clin Lab Anal 30(2):114–122

    CAS  Article  Google Scholar 

  21. 21.

    Wu SJ, Wang YQ, Duan N, Ma HL, Wang ZP (2015) Colorimetric aptasensor based on enzyme for the detection of vibrio parahemolyticus. J Agric Food Chem 63(35):7849–7854

    CAS  Article  Google Scholar 

  22. 22.

    He YY, Xiao W, Li GY, Yang F, Wu P, Yang T, Chen CM, Ding P (2019) A novel lead-ion-imprinted magnetic biosorbent: preparation, optimization and characterization. Environ Technol 40(4):488–507

    Article  Google Scholar 

  23. 23.

    He YY, Wu P, Xiao W, Li GY, Yi JC, He YF, Chen CM, Ding P, Duan YY (2019) Efficient removal of Pb(II) from aqueous solution by a novel ion imprinted magnetic biosorbent: adsorption kinetics and mechanisms. PLoS One. https://doi.org/10.1371/journal.pone.0213377

  24. 24.

    Bai Z, Li G, Liang J, Su J, Zhang Y, Chen H, Huang Y, Sui W, Zhao Y (2016) Non-enzymatic electrochemical biosensor based on Pt NPs/RGO-CS-fc nano-hybrids for the detection of hydrogen peroxide in living cells. Biosens Bioelectron 82:185–194

    CAS  Article  Google Scholar 

  25. 25.

    Mokhtarzadeh A, Tabarzad M, Ranjbari J, Guardia MDL, Hejazi M, Ramezani M (2016) Aptamers as smart ligands for nano-carriers targeting. Trends Anal Chem 82:316–327

    CAS  Article  Google Scholar 

  26. 26.

    Ma XY, Song L, Zhou NX, Xia Y, Wang ZP (2017) A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. Int J Food Microbiol 245(24):1–5

    CAS  Article  Google Scholar 

  27. 27.

    Xu XM, Ma XY, Wang HT, Wang ZP (2018) Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Microchim Acta 185(7):325

    Article  Google Scholar 

  28. 28.

    Zhang P, Liu H, Li XC, Ma SZ, Men S, Wei H, Cui JJ, Wang HN (2017) A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters. Biosens Bioelectron 87:1044–1049

    CAS  Article  Google Scholar 

  29. 29.

    Guo RY, Wang SY, Huang FC, Chen Q, Li YB, Liao M, Lin JH (2019) Rapid detection of Salmonella Typhimurium using magnetic nanoparticle immunoseparation, nanocluster signal amplifcation and smartphone image analysis. Sensors Actuators B Chem 284:134–139

    CAS  Article  Google Scholar 

  30. 30.

    Wang SY, Zheng LY, Cai GZ, Liu N, Liao M, Li YB, Zhang XB, Lin JH (2019) A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosens Bioelectron 140:111333

    CAS  Article  Google Scholar 

  31. 31.

    Wang XL, Niazi S, Huang YK, Sun WJ, Wu SJ, Duan N, Hun X, Wang ZP (2017) Homogeneous time-resolved FRET assay for the detection of Salmonella typhimurium using aptamer-modified NaYF4: Ce/Tb nanoparticles and a fluorescent DNA label. Microchim Acta 184:4021–4027

    CAS  Article  Google Scholar 

  32. 32.

    Duan N, Wu SJ, Zhu CQ, Ma XY, Wang ZP, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6

  33. 33.

    Hu J, Jiang YZ, Tang M, Wu LL, Xie HY, Zhang ZL, Pang DW (2018) Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella detection. Anal Chem. https://doi.org/10.1021/acs.analchem.8b05154

Download references


This work was supported by research grants from the National Natural Science Foundation of China (grant number 21676305) and the Fundamental Research Funds for the Central Universities of Central South University (grant number 2019zzts744).

Author information



Corresponding authors

Correspondence to Ping Ding or Cuimei Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 5457 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Wu, P., Li, G. et al. A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium. Microchim Acta 186, 711 (2019). https://doi.org/10.1007/s00604-019-3827-5

Download citation


  • Food-borne pathogens
  • Nanotechnology
  • Aptamer sensor
  • Bacterial detection
  • Optical characteristics
  • Methodological evaluation