Abstract
A luminescent metal organic framework (LMOF) of type UiO-66-NH2 was chosen for specific and sensitive detection of trace levels of hypochlorite. Hypochlorite causes the quenching of the blue fluorescence of nano-UiO-66-NH2 (with excitation/emission maxima at 325/430 nm), and this finding forms the basis for a fluorometric assay for hypochlorite. The method overcomes disadvantages of conventional redox-probes which are interfered by oxidants with oxidation capability stronger than that of hypochlorite. Compared with other fluorescent probes for sensing hypochlorite, UiO-66-NH2 has a comparable detection limit of 0.3 μmol L−1 and a broad linearity relationship in the range of 1–8 μmol L−1. The probe was successfully applied to the detection of hypochlorite in complex water samples and living Hela cells.

Schematic representation of hypochlorite induced quenching of the blue fluorescence of nano-UiO-66-NH2 (with excitation/emission maxima at 325/430 nm) through energy transfer. It overcomes disadvantages of conventional redox-probes which are interfered by oxidants with oxidation capability stronger than that of hypochlorite.
This is a preview of subscription content, log in to check access.







References
- 1.
Schreiber JS (1981) The occurrence of trihalomethanes in public water supply systems of New York state. J Am Water Works Assoc 73(3):154–159. https://doi.org/10.1002/j.1551-8833.1981.tb04668.x
- 2.
Zhu BC, Wu L, Zhang M, Wang YW, Liu CY, Wang ZK, Duan QX, Jia P (2018) A highly specific and ultrasensitive near-infrared fluorescent probe for imaging basal hypochlorite in the mitochondria of living cells. Biosens Bioelectron 107:218–223. https://doi.org/10.1016/j.bios.2018.02.023
- 3.
Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85. https://doi.org/10.1038/nrc2981
- 4.
Hu JJ, Wong NK, Lu MY, Chen XM, Ye S, Zhao AQ, Gao P, Kao RYT, Shen JG, Yang D (2016) HKOCl-3: a fluorescent hypochlorous acid probe for live-cell and in vivo imaging and quantitative application in flow cytometry and a 96-well microplate assay. Chem Sci 7(3):2094–2099. https://doi.org/10.1039/C5SC03855C
- 5.
Wang ZX, Jin X, Gao YF, Kong FY, Wang WJ, Wang W (2019) Fluorometric and colorimetric determination of hypochlorite using carbon nanodots doped with boron and nitrogen. Microchim Acta 186(6):328. https://doi.org/10.1007/s00604-019-3443-4
- 6.
Li K, Hou JT, Yang J, Yu XQ (2017) A tumor-specific and mitochondria-targeted fluorescent probe for real-time sensing of hypochlorite in living cells. Chem Commun 53(40):5539–5541. https://doi.org/10.1039/c7cc01679d
- 7.
Zhu JH, Wong KMC (2018) Dual-responsive fluorescent probe for hypochlorite via pH-modulated, ring-opening reactions of a coumarin-fused rhodol derivative. Sensors Actuators B Chem 267:208–215. https://doi.org/10.1016/j.snb.2018.03.147
- 8.
Shen BX, Qian Y, Qi ZQ, Lu CG, Sun Q, Xia X, Cui YP (2017) Near-infrared BODIPY-based two-photon ClO− probe based on thiosemicarbazide desulfurization reaction: naked-eye detection and mitochondrial imaging. J Mater Chem B 5(29):5854–5861. https://doi.org/10.1039/C7TB01344B
- 9.
Li GY, Lin Q, Ji LN, Chao H (2014) Phosphorescent iridium (III) complexes as multicolour probes for imaging of hypochlorite ions in mitochondria. J Mater Chem B 2(45):7918–7926. https://doi.org/10.1039/C4TB01251H
- 10.
Xu QL, Heo CH, Kim JA, Lee HS, Hu Y, Kim D, Swamy KMK, Kim G, Nam SJ, Kim HM, Yoon J (2016) A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria. Anal Chem 88(12):6615–6620. https://doi.org/10.1021/acs.analchem.6b01738
- 11.
Xue M, Zhang L, Zou M, Lan C, Zhan Z, Zhao S (2015) Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sensors Actuators B Chem 219:50–56. https://doi.org/10.1016/j.snb.2015.05.021
- 12.
Liu FY, Gao YL, Wang JT, Sun SG (2014) Reversible and selective luminescent determination of ClO−/H2S redox cycle in vitro and in vivo based on a ruthenium trisbipyridyl probe. Analyst 139(13):3324–3329. https://doi.org/10.1039/C4AN00331D
- 13.
Zhang P, Wang Y, Chen L, Yin YB (2017) Bimetallic nanoclusters with strong red fluorescence for sensitive detection of hypochlorite in tap water. Microchim Acta 184(10):3781–3787. https://doi.org/10.1007/s00604-017-2398-6
- 14.
Zhang YH, Ma L, Tang CC, Pan SN, Shi DL, Wang SJ, Li MY, Guo Y (2018) A highly sensitive and rapidly responding fluorescent probe based on a rhodol fluorophore for imaging endogenous hypochlorite in living mice. J Mater Chem B 6(5):725–731. https://doi.org/10.1039/C7TB02862H
- 15.
Lu T, Zhang L, Sun M, Deng D, Su Y, Lv Y (2016) Amino-functionalized metal-organic frameworks nanoplates-based energy transfer probe for highly selective fluorescence detection of free chlorine. Anal Chem 88(6):3413–3420. https://doi.org/10.1021/acs.analchem.6b00253
- 16.
Qu F, Sun C, Lv XX, You JM (2018) A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Microchim Acta 185(8):359. https://doi.org/10.1007/s00604-018-2888-1
- 17.
Chen J, Chen HY, Wang TS, Li JF, Wang J, Lu XQ (2019) Copper ion fluorescent probe based on Zr-MOFs composite. Anal Chem 91(7):4331–4336. https://doi.org/10.1021/acs.analchem.8b03924
- 18.
Zhang X, Hu Q, Xia T, Zhang J, Yang Y, Cui Y, Chen B, Qian G (2016) Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-organic frameworks. ACS Appl Mater Interfaces 8(47):32259–32265. https://doi.org/10.1021/acsami.6b12118
- 19.
Deng JJ, Wang K, Wang M, Yu P, Mao LQ (2017) Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J Am Chem Soc 139(16):5877–5882. https://doi.org/10.1021/jacs.7b01229
- 20.
Ma Y, Su H, Kuang X, Li X, Zhang T, Tang B (2014) Heterogeneous nano metal-organic framework fluorescence probe for highly selective and sensitive detection of hydrogen sulfide in living cells. Anal Chem 86(22):11459–11463. https://doi.org/10.1021/ac503622n
- 21.
Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49(82):9449–9451. https://doi.org/10.1039/c3cc46105j
- 22.
Kobayashi T, Iwata N, Oh JS, Hahizume H, Ohta T, Takeda K, Ishikawa K, Hori M, Ito M (2017) Bactericidal pathway of Escherichia coli in buffered saline treated with oxygen radicals. J Phys D Appl Phys 50(15):155208. https://doi.org/10.1088/1361-6463/aa61d7
- 23.
Wu XJ, Li Z, Yang L, Han JJ, Han SF (2013) A self-referenced nanodosimeter for reaction based ratiometric imaging of hypochlorous acid in living cells. Chem Sci 4(1):460–467. https://doi.org/10.1039/C2SC21485G
- 24.
Simões EFC, Leitão JMM, da Silva JCGE (2016) Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 183(5):1769–1777. https://doi.org/10.1007/s00604-016-1807-6
- 25.
Cheng GH, Fan JL, Sun W, Sui K, Jin X, Wang JY, Peng XJ (2013) A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. Analyst 138(20):6091–6096. https://doi.org/10.1039/C3AN01152F
- 26.
Wang Y, Zhang P, Lu Q, Wang Y, Fu WS, Tan Q, Luo WP (2018) Water-soluble MoS2 quantum dots are a viable fluorescent probe for hypochlorite. Microchim Acta 185(4):233. https://doi.org/10.1007/s00604-018-2768-8
- 27.
Wang S, Wu SH, Fang WL, Guo XF, Wang H (2019) Synthesis of non-doped and non-modified carbon dots with high quantum yield and crystallinity by one-pot hydrothermal method using a single carbon source and used for ClO− detection. Dyes Pigments 164:7–13. https://doi.org/10.1016/j.dyepig.2019.01.004
- 28.
Tang Q, Yang TT, Huang YM (2015) Copper nanocluster-based fluorescent probe for hypochlorite. Microchim Acta 182(13–14):2337–2343. https://doi.org/10.1007/s00604-015-1586-5
- 29.
Zhai W, Wang C, Yu P, Wang Y, Mao L (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86(24):12206–12213. https://doi.org/10.1021/ac503215z
- 30.
He H, Song Y, Sun F, Zhao N, Zhu G (2015) Sorption properties and nitroaromatic explosives sensing based on two isostructural metal-organic frameworks. Cryst Growth Des 15(4):2033–2038. https://doi.org/10.1021/acs.cgd.5b00229
- 31.
Xiang Z, Fang C, Leng S, Cao D (2014) An amino group functionalized metal-organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. J Mater Chem A 2(21):7662–7665. https://doi.org/10.1039/C4TA00313F
- 32.
Liédana N, Lozano P, Galve A, Téllez C, Coronas J (2014) The template role of caffeine in its one-step encapsulation in MOF NH2-MIL-88B(Fe). J Mater Chem B 2(9):1144–1151. https://doi.org/10.1039/C3TB21707H
- 33.
Han J, Shen L, Chen XB, Fang WH (2013) Phosphorescent mechanism for single-dopant white OLED of FPt: electronic structure and electron exchange-induced energy transfer. J Mater Chem B 1(27):4227–4235. https://doi.org/10.1039/c3tc30692e
- 34.
Tan JJ, Zhang BX, Luo Y, Ye SJ (2017) Ultrafast vibrational dynamics of membrane-bound peptides at the lipid bilayer/water interface. Angew Chem Int Ed 56(42):12977–12981. https://doi.org/10.1002/anie.201706996
- 35.
Chikalova-Luzina OP, Samosvat DM, Vyatkin VM, Zegrya GG (2017) Resonant electronic excitation energy transfer by exchange mechanism in the quantum dot system. Superlattice Microst 111:166–172. https://doi.org/10.1016/j.spmi.2017.06.029
Acknowledgements
The authors thank Dr. Kathryn R. Williams for manuscript review. This work is supported by grants awarded by the National Institute of Health (GM079359 and CA133086) and the National Natural Science Foundation of China (No. 21505084, 21775089).
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 521 kb)
Rights and permissions
About this article
Cite this article
Guo, L., Liu, Y., Qu, F. et al. Luminescent metal organic frameworks with recognition sites for detection of hypochlorite through energy transfer. Microchim Acta 186, 740 (2019). https://doi.org/10.1007/s00604-019-3806-x
Received:
Accepted:
Published:
Keywords
- UiO-66-NH2
- Zr-based MOFs
- Amino functionalized MOF
- Non-redox mechanism
- Fluorescence quenching
- Porous materials
- Water samples
- DPD method