Dual-probe (colorimetric and fluorometric) detection of ferritin using antibody-modified gold@carbon dot nanoconjugates

Abstract

A dual-mode assay is described for immunological determination of the anemia biomarker ferritin. It is based on the use of a gold@carbon dot (Au@CD) nanoconjugate as a colorimetric and fluorescent probe. Au@CD is hydrophilic, easily surface modified and stable in aqueous solution. The Au@CD have a red color with blue-green fluorescence and were modified with antibody against ferritin. This allows bi-modal detection of ferritin. Assays can be performed in phosphate buffer and were also analyzed in (Bovine Serum Albumin) BSA and (Fetal Bovine Serum) FBS. Detection is based on antigen-antibody interaction underlying the classical sandwich model. Response to ferritin can be detected by spectrophotometry (at 570 nm) or fluorescence (at excitation/emission maxima of 354/454 nm). Under optimal conditions, the assay has a linear response in the 1 to 120 ngmL−1 ferritin concentration range and detection limits of 20 ng (colorimetrically) and 64 ng (fluorometrically).

Schematic representation of the function of the designed nanoprobe. The Au@CD nanoconjugates are functionalized with ferritin antibody in the initial step which specifically interacts with ferritin molecules leading to aggregation and subsequent changes in the optical and fluorescence signals.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Personick ML, Langille MR, Wu J, Mirkin CA (2013) Synthesis of gold hexagonal bipyramids directed by planar-twinned silver triangular nanoprisms. J Am Chem Soc 135:3800–3803

    CAS  Article  Google Scholar 

  2. 2.

    Huang J, Ng AL, Piao Y, Chen CF, Green AA, Sun CF, Hersam MC, Lee CS, Wang Y (2013) Covalently functionalized double-walled carbon nanotubes combine high sensitivity and selectivity in the electrical detection of small molecules. J Am Chem Soc 135:2306–2312

    CAS  Article  Google Scholar 

  3. 3.

    Cao C, Kim JP, Kim BW, Chae H, Yoon HC, Yang SS, Sim SJ (2006) A strategy for sensitivity and specificity enhancements in prostate specificantigen-1-antichymotrypsin detection based on surface Plasmon resonance. Biosens Bioelectron 21:2106–2113

    CAS  Article  Google Scholar 

  4. 4.

    Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. TrAC Trends Anal Chem 89:163–180

    CAS  Article  Google Scholar 

  5. 5.

    Chou SF, Hsu WL, Hwang JM, Chen CY (2004) Development of an immunosensor for human ferritin a nonspecific tumor marker, based on surface Plasmon resonance. Biosens Bioelectron 19:999–1005

    CAS  Article  Google Scholar 

  6. 6.

    Morgan CL, Newman DJ, Price CP (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 42:193–209

    CAS  Article  Google Scholar 

  7. 7.

    Peterson RD, Cunningham BT, Andrade JE (2014) A photonic crystal biosensor assay for ferritin utilizing iron oxide nanoparticles. Biosens Bioelectron 56:320–322

    CAS  Article  Google Scholar 

  8. 8.

    Wang X, Xu R, Sun X, Wang Y, Ren X, Du B, Wu D, Wei Q (2017) Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photo electrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosens Bioelectron 96:239–245

    CAS  Article  Google Scholar 

  9. 9.

    Wang XL, Tao GH, Meng YH (2009) Nanogold hollow microsphere-based electrochemical immunosensor for the detection of ferritin in human serum. Microchim Acta 167:147–152

    CAS  Article  Google Scholar 

  10. 10.

    Song T, Wang W, Meng L, Liu Y, Jia X, Mao X (2017) Electrochemical detection of human ferritin based on gold Nano rod reporter probe and cotton thread immunoassay device. Chin Chem Lett 28:226–230

    CAS  Article  Google Scholar 

  11. 11.

    Xu F, Yao Y, Bai D, Xu R, Mei J, Wu D, Gao Z, Jiang K (2015) Au nanoparticle decorated WO3 photo electrode for enhanced photo electrochemical properties. RSC Adv 5:60339–60344

    CAS  Article  Google Scholar 

  12. 12.

    Yoneda M, Nozaki Y, Endo H, Mawatari H et al (2010) Serum ferritin is a clinical biomarker in Japanese patients with nonalcoholic steatohepatitis (NASH) independent of HFE gene mutation. Dig Dis Sci 55:808–814

    CAS  Article  Google Scholar 

  13. 13.

    Shalitin S, Carmi D, Weintrob N, Phillip M et al (2005) Serum ferritin level as a predictor of impaired growth and puberty in thalassemia major patients. Eur J Haematol 74:93–100

    CAS  Article  Google Scholar 

  14. 14.

    Knovich MA, Storey JA, Coffman LG, Torti SV, Torti FM (2009) Ferritin for the clinician. Blood Rev 23:95–104

    CAS  Article  Google Scholar 

  15. 15.

    Sayre LM, Perry G, Smith MA (1993) Redox metals and neurodegenerative disease. Curr Opin Chem Biol 3:220–225

    Article  Google Scholar 

  16. 16.

    Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3:77

    Google Scholar 

  17. 17.

    Benzi G, Moretti A (1995) Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol Aging 16:661–674

    CAS  Article  Google Scholar 

  18. 18.

    Halliwell BJ (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    CAS  Article  Google Scholar 

  19. 19.

    Priyadarshini E, Rawat K (2017) Au@carbon dot nanoconjugates as dual mode enzyme-free sensing platform for cholesterol. J Mater Chem B 5:5425–5432

    CAS  Article  Google Scholar 

  20. 20.

    Priyadarshini E, Rawat K, Prasad T, Bohidar HB (2018) Antifungal efficacy of Au@ carbon dots nanoconjugates against opportunistic fungal pathogen, Candida albicans. Colloids Surf B: Biointerfaces 163:355–361

    CAS  Article  Google Scholar 

  21. 21.

    Nicol JR, Dixon D, Coulter JA (2015) Gold nanoparticle surface functionalization – a necessary requirement in the development of novel nano-therapeutics. Nanomedicine 10(8):1315–1326

    CAS  Article  Google Scholar 

  22. 22.

    Cho WS, Cho M, Jeong J et al (2010) Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 245:116–123

    CAS  Article  Google Scholar 

  23. 23.

    Shyh-Dar L, Huang L (2011) Stealth nanoparticles: high density but shed dable PEG is a key for tumor targeting. J Control Release 145(3):178–181

    Google Scholar 

  24. 24.

    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    CAS  Article  Google Scholar 

  25. 25.

    Njoki PN, Lim IIS, Mott D, Park HY, Khan B, Mishra S, Sujakumar R, Luo J, Zhong CJ (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111(40):14664–14669

    CAS  Article  Google Scholar 

  26. 26.

    Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface Plasmon resonance and its enhancement of the radiative and nonradioactive properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    CAS  Article  Google Scholar 

  27. 27.

    Priyadarshini E, Pradhan N (2017) Metal-induced aggregation of valine capped gold nanoparticles: an efficient and rapid approach for colorimetric detection of Pb2+ ions. Sci Rep 7(1):9278

    CAS  Article  Google Scholar 

  28. 28.

    Priyadarshini E, Pradhan N, Panda PK, Mishra BK (2015) Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS). Biosens Bioelectron 68:598–603

    CAS  Article  Google Scholar 

  29. 29.

    Orino K, Watanabe K (2008) Molecular, physiological and clinical aspects of the iron storage protein ferritin. Vet J 178:191–201

    CAS  Article  Google Scholar 

  30. 30.

    Saeed AM, Khalil EAG, Elhassan AMA, Hashim FA et al (1998) Serum erythropoietin concentration in anemia of visceral leishmaniosis (kala-azar) before and during antimonial therapy. Br J Haematol 100:720–724

    CAS  Article  Google Scholar 

  31. 31.

    Dey N, Ali A, Kamra M, Bhattacharya S (2019) Simultaneous sensing of ferritin and apoferritin proteins using an iron-responsive dye and evaluation of physiological parameters associated with serum iron estimation. J Mater Chem B 7:986–993

    CAS  Article  Google Scholar 

  32. 32.

    Wang S, Tan Y (2007) A novel amperometric immunosensor based on Fe3O4 magnetic nanoparticles/chitosan composite film for determination of ferritin. Anal Bioanal Chem 387:703–708

    CAS  Article  Google Scholar 

  33. 33.

    Rena Y, Walczyk T (2014) Quantification of ferritin bound iron in human serum using species-specific isotope dilution mass spectrometry. Metallomics. 6:1709–1717

    Article  Google Scholar 

  34. 34.

    Liu P, Na N, Liu T, Huang L, He D, Hua W, Ouyang J (2011) Ultrasensitive detection of ferritin in human serum by Western blotting based on quantum dots-labeled avidin–biotin system. Proteomics. 11:3510–3517

    CAS  Article  Google Scholar 

  35. 35.

    Yena L, Panb T, Leec C, Chao T (2016) Label-free and real-time detection of ferritin using a horn-likepolycrystalline-silicon nanowire field-effect transistor biosensor Sensors and Actuators B 230: 398–404. https://doi.org/10.1016/j.snb.2016.02.095

  36. 36.

    Wang XL, Tao GH, Meng YH (2009) Nanogold hollow microsphere-based electrochemical immunosensor for the detection of ferritin in human serum. Microchim Acta 167:147–152

    CAS  Article  Google Scholar 

Download references

Acknowledgments

EP is thankful to DST-SERB for National Postdoctoral Fellowship under the grant number PDF/2017/000024. The authors thank the Advanced Instrument Research Facility of the University for Analytical Characterization.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulraj Rajamani.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 305 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Priyadarshini, E., Rawat, K., Bohidar, H.B. et al. Dual-probe (colorimetric and fluorometric) detection of ferritin using antibody-modified gold@carbon dot nanoconjugates. Microchim Acta 186, 687 (2019). https://doi.org/10.1007/s00604-019-3802-1

Download citation

Keywords

  • Bi-modal detection
  • Antigen-antibody
  • Immunoassay
  • Anemia
  • Nanoprobe
  • Diagnostic sensor
  • Binding efficiency
  • Dynamic light scattering
  • Aggregation
  • Quenching