A multichannel system integrating molecularly imprinted conductive polymers for ultrasensitive voltammetric determination of four steroid hormones in urine

Abstract

This work reports on a modularized electrochemical method for the determination of the hormones cortisol, progesterone, testosterone and 17β-estradiol in urine. These hormones were employed as templates when generating molecular imprints from aniline and metanilic acid by electropolymerization on the surface of screen-printed electrodes. The electrically conductive imprint was characterized by SEM, AFM and cyclic voltammetry. A four-channel system was then established to enable simultaneous determination of the hormones by cyclic voltammetry. The detection limits for cortisol, progesterone, testosterone and 17β-estradiol are as low as 2, 2.5, 10 and 9 ag·mL−1 (for S/N = 3).

A four-channel system was established to enable simultaneous determination of 4 steroid hormones by cyclic voltammetry and by using moleculalry imprinted polymers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Norman AW, Litwack G (1997) Hormones. Academic Press

  2. 2.

    Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130(3):355–391

    Article  Google Scholar 

  3. 3.

    Hucklebridge F, Clow A, Abeyguneratne T, Huezo-Diaz P, Evans P (1999) The awakening cortisol response and blood glucose levels. Life Sci 64(11):931–937

    CAS  Article  Google Scholar 

  4. 4.

    Barbieri RL (2014) The endocrinology of the menstrual cycle. In: Rosenwaks Z, Wassarman PM (eds) Human fertility: methods and protocols. Springer, New York, New York, NY, pp 145–169. https://doi.org/10.1007/978-1-4939-0659-8_7

    Google Scholar 

  5. 5.

    Marco F (2015) Clinical roles and applications of progesterone in reproductive medicine: an overview. Acta Obstet Gynecol Scand 94 (S161:3–7. https://doi.org/10.1111/aogs.12791

    CAS  Article  Google Scholar 

  6. 6.

    Blakemore S-J (2008) The social brain in adolescence. Nat Rev Neurosci 9(4):267–277

    CAS  Article  Google Scholar 

  7. 7.

    Erickson GF, Magoffin DA, Dyer CA, Hofeditz C (1985) The ovarian androgen producing cells: a review of structure/function relationships. Endocr Rev 6(3):371–399

    CAS  Article  Google Scholar 

  8. 8.

    Dalal PK, Agarwal M (2015) Postmenopausal syndrome. Indian J Psychiatry 57(Suppl 2):S222–S232. https://doi.org/10.4103/0019-5545.161483

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Huang C-Y, O'Hare D, Chao IJ, Wei H-W, Liang Y-F, Liu B-D, Lee M-H, Lin H-Y (2015) Integrated potentiostat for electrochemical sensing of urinary 3-hydroxyanthranilic acid with molecularly imprinted poly(ethylene-co-vinyl alcohol). Biosens Bioelectron 67:208–213. https://doi.org/10.1016/j.bios.2014.08.018

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Huang C-Y, Tsai T-C, Thomas JL, Lee M-H, Liu B-D, Lin H-Y (2009) Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcohol) potentiostat sensors. Biosens Bioelectron 24(8):2611–2617. https://doi.org/10.1016/j.bios.2009.01.016

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhao G, Si Y, Wang H, Liu G (2016) A portable electrochemical detection system based on graphene/ionic liquid modified screen-printed electrode for the detection of cadmium in soil by square wave anodic stripping voltammetry. Int J Electrochem Sci 11:54–64

    CAS  Google Scholar 

  12. 12.

    Yin L-T, Wang H-Y, Lin Y-C, Huang W-C (2012) A novel instrumentation circuit for electrochemical measurements. Sensors (Basel, Switzerland) 12(7):9687–9696. https://doi.org/10.3390/s120709687

    Article  Google Scholar 

  13. 13.

    Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2(1):19–24

    CAS  Article  Google Scholar 

  14. 14.

    Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402(10):3177–3204. https://doi.org/10.1007/s00216-011-5696-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA (2012) MIP sensors – the electrochemical approach. Anal Bioanal Chem 402(5):1827–1846. https://doi.org/10.1007/s00216-011-5405-5

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Sreenivasan K (2007) Identification of salicylic acid using surface modified polyurethane film using an imprinted layer of polyaniline. Anal Chim Acta 583(2):284–288. https://doi.org/10.1016/j.aca.2006.10.019

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Najafi M, Mollazadeh M (2011) Selective recognition of chloroacetic acids by imprinted polyaniline film. J Appl Polym Sci 121(1):292–298

    CAS  Article  Google Scholar 

  18. 18.

    Roy AK, Dhand C, Malhotra BD (2011) Molecularly imprinted polyaniline film for ascorbic acid detection. J Mol Recognit 24(4):700–706

    CAS  Article  Google Scholar 

  19. 19.

    Roy AC, Nisha V, Dhand C, Ali MA, Malhotra B (2013) Molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for Para-nitrophenol detection. Anal Chim Acta 777:63–71

    CAS  Article  Google Scholar 

  20. 20.

    Saadati F, Ghahramani F, Shayani-jam H, Piri F, Yaftian MR (2018) Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J Taiwan Inst Chem Eng 86:213–221. https://doi.org/10.1016/j.jtice.2018.02.019

    CAS  Article  Google Scholar 

  21. 21.

    Lee M-H, O'Hare D, Guo H-Z, Yang C-H, Lin H-Y (2016) Electrochemical sensing of urinary progesterone with molecularly imprinted poly(aniline-co-metanilic acid)s. J Mater Chem B 4(21):3782–3787. https://doi.org/10.1039/C6TB00760K

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Luo SC, Thomas JL, Guo HZ, Liao WT, Lee MH, Lin HY (2017) Electrosynthesis of nanostructured, imprinted poly(hydroxymethyl 3,4-ethylenedioxythiophene) for the ultrasensitive electrochemical detection of urinary progesterone. ChemistrySelect 2(26):7935–7939. https://doi.org/10.1002/slct.201701469

    CAS  Article  Google Scholar 

  23. 23.

    Hrichi H, Monser L, Adhoum N (2017) A novel electrochemical sensor based on electropolymerized molecularly imprinted poly(aniline-co-anthranilic acid) for sensitive detection of amlodipine. J Electroanal Chem 805:133–145. https://doi.org/10.1016/j.jelechem.2017.10.019

    CAS  Article  Google Scholar 

  24. 24.

    Yang C-H, Chih Y-K, Cheng H-E, Chen C-H (2005) Nanofibers of self-doped polyaniline. Polymer 46(24):10688–10698. https://doi.org/10.1016/j.polymer.2005.09.044

    CAS  Article  Google Scholar 

  25. 25.

    Yang CH, Wen TC (1994) Polyaniline derivative with external and internal doping via electrochemical copolymerization of aniline and 2,5-Diaminobenzenesulfonic acid on IrO2 - coated titanium electrode. J Electrochem Soc 141(10):2624–2632. https://doi.org/10.1149/1.2059144

    CAS  Article  Google Scholar 

  26. 26.

    Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18(1):285–290. https://doi.org/10.1016/0379-6779(87)90893-9

    CAS  Article  Google Scholar 

  27. 27.

    Stilwell DE, Park SM (1988) Electrochemistry of conductive polymers: III . Some physical and electrochemical properties observed from electrochemically grown polyaniline. J Electrochem Soc 135(10):2491–2496. https://doi.org/10.1149/1.2095364

    CAS  Article  Google Scholar 

  28. 28.

    Duić L, Mandić Z (1992) Counter-ion and pH effect on the electrochemical synthesis of polyaniline. J Electroanal Chem 335(1–2):207–221

    Article  Google Scholar 

  29. 29.

    Murase N, Taniguchi S-i, Takano E, Kitayama Y, Takeuchi T (2016) A molecularly imprinted nanocavity-based fluorescence polarization assay platform for cortisol sensing. J Mater Chem B 4(10):1770–1777. https://doi.org/10.1039/C5TB02069G

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Murase N, Taniguchi SI, Takano E, Kitayama Y, Takeuchi T (2015) Fluorescence reporting of binding interactions of target molecules with Core–Shell-type cortisol-imprinted polymer particles using environmentally responsible fluorescent-labeled cortisol. Macromol Chem Phys 216(13):1396–1404. https://doi.org/10.1002/macp.201500065

    CAS  Article  Google Scholar 

  31. 31.

    Suda N, Sunayama H, Kitayama Y, Kamon Y, Takeuchi T (2017) Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol. R Soc Open Sci 4(8):170300. https://doi.org/10.1098/rsos.170300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Usha SP, Shrivastav AM, Gupta BD (2017) A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film. Biosens Bioelectron 87:178–186. https://doi.org/10.1016/j.bios.2016.08.040

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the Ministry of Science and Technology of the Republic of China, Taiwan for financially supporting this research under contract nos. MOST 106-2221-E-390-013-MY3, 106-2314-B-390-001-MY2 and 107-2923-M-390-001-MY3.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chien-Hsin Yang or Hung-Yin Lin.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1140 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, MH., Thomas, J.L., Liu, WC. et al. A multichannel system integrating molecularly imprinted conductive polymers for ultrasensitive voltammetric determination of four steroid hormones in urine. Microchim Acta 186, 695 (2019). https://doi.org/10.1007/s00604-019-3797-7

Download citation

Keywords

  • Multichannel potentiostat
  • Hormones
  • Molecular imprinting
  • Electrochemical sensing
  • Urine analysis