Skip to main content
Log in

A dual-channel ratiometric fluorescent probe for determination of the activity of tyrosinase using nitrogen-doped graphene quantum dots and dopamine-modified CdTe quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A dual-channel ratiometric fluorometric assay is described for the determination of the activity of the enzyme tyrosinase (TYR). It is making use of blue-emitting nitrogen-doped graphene quantum dots (bQDs) and of red-emitting dopamine-modified CdTe quantum dots (DA-rQDs). A mixture of the two kinds of quantum dots was prepared, with the ratiometric fluorescence intensity of red to blue adjusted to 5:1. The dopamine on the rQDs is catalytically oxidized by TYR to form dopamine quinone, and this leads to a reduction of the intensity of red fluorescence (peaking at 644 nm). The emission of the bQDs (peaking at 440 nm) represents a stable reference signal. After adding different activities of TYR, the color of the fluorescence of the system continuously changes from red to blue. This can also be visually observed. The ratio of luminescence intensities (at 644/440 nm) can be used to quantify the activity of TYR, and the detection limit is 4.5 mU mL−1. In addition, a test strip is described based on the above method.

Schematic representation of the ratiometric fluorometric method for determination of the activity of tyrosinase (TYR). (The full name of the abbreviation in the Scheme: 1-ethyl-3-[3-(dimethylamino)-propyl] carbodiimide hydrochloride (EDC), dopamine (DA), N-hydroxysuccinimide (NHS), nitrogen-doped graphene quantum dots (bQDs), CdTe quantum dots (rQDs)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29(1):3–14. https://doi.org/10.1016/j.syapm.2005.07.012

    Article  CAS  PubMed  Google Scholar 

  2. Yoruk R, Marshall MR (2003) Physicochemical properties and function of plant polyphenol oxidase: a review. J Food Biochem 27(5):361–422. https://doi.org/10.1111/j.1745-4514.2003.tb00289.x

    Article  CAS  Google Scholar 

  3. Chang T-S (2009) An updated review of Tyrosinase inhibitors. Int J Mol Sci 10(6):2440–2475. https://doi.org/10.3390/ijms10062440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100(2):219–232. https://doi.org/10.1111/j.1365-2672.2006.02866.x

    Article  CAS  PubMed  Google Scholar 

  5. Garcia P, Ramallo IA, Furlan RLE (2017) Reverse phase compatible TLC-bioautography for detection of Tyrosinase inhibitors. Phytochem Anal 28(2):101–105. https://doi.org/10.1002/pca.2655

    Article  CAS  PubMed  Google Scholar 

  6. Kim H-r (2014) Recent advances in Tyrosinase research as an industrial enzyme. The Korean Society for Biotechnology and Bioengineering 29(1):1–8

    Google Scholar 

  7. Tessari I, Bisaglia M, Valle F, Samori B, Bergantino E, Mammi S, Bubacco L (2008) The reaction of alpha-synuclein with tyrosinase - possible implications for Parkinson disease. J Biol Chem 283(24):16808–16817. https://doi.org/10.1074/jbc.M709014200

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Gan Z-F, Guo D, Xia H-L, Patrice FT, Hafez ME, Li D-W (2019) Electrochemistry-regulated recyclable SERS sensor for sensitive and selective detection of Tyrosinase activity. Anal Chem 91(10):6507–6513. https://doi.org/10.1021/acs.analchem.8b05341

    Article  CAS  PubMed  Google Scholar 

  9. Li S, Mao L, Tian Y, Wang J, Zhou N (2012) Spectrophotometric detection of tyrosinase activity based on boronic acid-functionalized gold nanoparticles. Analyst 137(4):823–825. https://doi.org/10.1039/c2an16085d

    Article  CAS  PubMed  Google Scholar 

  10. Lin T-E, Cortes-Salazar F, Lesch A, Qiao L, Bondarenko A, Girault HH (2015) Multiple scanning electrochemical microscopy mapping of tyrosinase in micro-contact printed fruit samples on polyvinylidene fluoride membrane. Electrochim Acta 179:57–64. https://doi.org/10.1016/j.electacta.2015.03.224

    Article  CAS  Google Scholar 

  11. Liu X, Yan R, Zhu J, Zhang J, Liu X (2015) Growing TiO2 nanotubes on graphene nanoplatelets and applying the nanonanocomposite as scaffold of electrochemical tyrosinase biosensor. Sensors Actuators B Chem 209:328–335. https://doi.org/10.1016/j.snb.2014.11.124

    Article  CAS  Google Scholar 

  12. Niu W-J, Shan D, Zhu R-H, Deng S-Y, Cosnier S, Zhang X-J (2016) Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and L-ascorbic acid. Carbon 96:1034–1042. https://doi.org/10.1016/j.carbon.2015.10.051

    Article  CAS  Google Scholar 

  13. Qiao J, Hwang Y-H, Chen C-F, Qi L, Dong P, Mu X-Y, Kim D-P (2015) Ratiometric fluorescent polymeric thermometer for thermogenesis investigation in living cells. Anal Chem 87(20):10535–10541. https://doi.org/10.1021/acs.analchem.5b02791

    Article  CAS  PubMed  Google Scholar 

  14. Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by Ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133(22):8424–8427. https://doi.org/10.1021/ja2015873

    Article  CAS  PubMed  Google Scholar 

  15. Wang K, Qian J, Jiang D, Yang Z, Du X, Wang K (2015) Onsite naked eye determination of cysteine and homocysteine using quencher displacement-induced fluorescence recovery of the dual-emission hybrid probes with desired intensity ratio. Biosens Bioelectron 65:83–90. https://doi.org/10.1016/j.bios.2014.09.093

    Article  CAS  PubMed  Google Scholar 

  16. Chai L, Zhou J, Feng H, Tang C, Huang Y, Qian Z (2015) Functionalized carbon quantum dots with dopamine for Tyrosinase activity monitoring and inhibitor screening: in vitro and intracellular investigation. ACS Appl Mater Interfaces 7(42):23564–23574. https://doi.org/10.1021/acsami.5b06711

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Dong Y, Ma Y, Han Y, Ma S, Chen H, Chen X (2018) One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO probing and cell imaging. Nanoscale 10(28):13589–13598. https://doi.org/10.1039/c8nr04596h

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Cui P, Zhang F, Feng X, Wang Y, Yang Y, Liu X (2016) Fluorescent probes for "off-on" highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta 152:288–300. https://doi.org/10.1016/j.talanta.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  19. Song Y, Li Y, Liu Z, Liu L, Wang X, Su X, Ma Q (2014) A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence "turn on-off" nanosensor for lysozyme detection. Biosens Bioelectron 61:9–13. https://doi.org/10.1016/j.bios.2014.04.036

    Article  CAS  PubMed  Google Scholar 

  20. Yu J, Song N, Zhang Y-K, Zhong S-X, Wang A-J, Chen J (2015) Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors Actuators B Chem 214:29–35. https://doi.org/10.1016/j.snb.2015.03.006

    Article  CAS  Google Scholar 

  21. Shi B, Zhang L, Lan C, Zhao J, Su Y, Zhao S (2015) One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury (II) ions. Talanta 142:131–139. https://doi.org/10.1016/j.talanta.2015.04.059

    Article  CAS  PubMed  Google Scholar 

  22. Huang X, Zhou Y, Liu C, Zhang R, Zhang L, Du S, Liu B, Han M-Y, Zhang Z (2016) A single dual-emissive nanofluorophore test paper for highly sensitive colorimetry-based quantification of blood glucose. Biosens Bioelectron 86:530–535. https://doi.org/10.1016/j.bios.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Liu J, Guo S, Zhang Y, Huang H, Liu Y, Kang Z (2015) Carbon dots from PEG for highly sensitive detection of levodopa. J Mater Chem B 3(11):2378–2387. https://doi.org/10.1039/c4tb01983k

    Article  CAS  Google Scholar 

  24. Zhu X, Hu J, Zhao Z, Sun M, Chi X, Wang X, Gao J (2015) Kinetic and sensitive analysis of Tyrosinase activity using Electron transfer complexes: in vitro and intracellular study. Small 11(7):862–870. https://doi.org/10.1002/smll.201401595

    Article  CAS  PubMed  Google Scholar 

  25. Qian L, Hong H, Han M, Xu C, Wang S, Guo Z, Yan D (2019) A ketone-functionalized carbazolic porous organic framework for sensitive fluorometric determination of p-nitroaniline. Microchim Acta 186(7):457. https://doi.org/10.1007/s00604-019-3581-8

    Article  CAS  Google Scholar 

  26. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  27. Teng Y, Jia X, Li J, Wang E (2015) Ratiometric fluorescence detection of Tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal Chem 87(9):4897–4902. https://doi.org/10.1021/acs.analchem.5b00468

    Article  CAS  PubMed  Google Scholar 

  28. Yuan J, Cen Y, Kong X-J, Wu S, Liu C-L, Yu R-Q, Chu X (2015) MnO2-Nanosheet-modified Upconversion Nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces 7(19):10548–10555. https://doi.org/10.1021/acsami.5b02188

    Article  CAS  PubMed  Google Scholar 

  29. Hu J-J, Bai X-L, Liu Y-M, Liao X (2017) Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis. Anal Chim Acta 995:99–105. https://doi.org/10.1016/j.aca.2017.09.038

    Article  CAS  PubMed  Google Scholar 

  30. Ma X, Gao W, Halawa MI, Lan Y, Li J, Xu G (2019) Lucigenin fluorescent assay of tyrosinase activity and its inhibitor screening. Sensors Actuators B Chem 280:41–45. https://doi.org/10.1016/j.snb.2018.10.044

    Article  CAS  Google Scholar 

  31. Liu B-W, Huang P-C, Li J-F, Wu F-Y (2017) Colorimetric detection of tyrosinase during the synthesis of kojic acid/silver nanoparticles under illumination. Sensors Actuators B Chem 251:836–841. https://doi.org/10.1016/j.snb.2017.05.129

    Article  CAS  Google Scholar 

  32. Wu X, Li L, Shi W, Gong Q, Ma H (2016) Near-infrared fluorescent probe with new recognition moiety for specific detection of Tyrosinase activity: design, synthesis, and application in living cells and zebrafish. Ange Chem Int Ed 55(47):14728–14732. https://doi.org/10.1002/anie.201609895

    Article  CAS  Google Scholar 

  33. Xu Q, Yoon J (2011) Visual detection of dopamine and monitoring tyrosinase activity using a pyrocatechol violet-Sn4+ complex. Chem Commun 47(46):12497–12499. https://doi.org/10.1039/c1cc15587c

    Article  CAS  Google Scholar 

  34. Lei C, Zhao X-E, Sun J, Yan X, Gao Y, Gao H, Zhu S, Wang H (2017) A simple and novel colorimetric assay for tyrosinase and inhibitor screening using 3, 3 ', 5, 5 '-tetramethylbenzidine as a chromogenic probe. Talanta 175:457–462. https://doi.org/10.1016/j.talanta.2017.07.070

    Article  CAS  PubMed  Google Scholar 

  35. Yang X, Luo Y, Zhuo Y, Feng Y, Zhu S (2014) Novel synthesis of gold nanoclusters templated with L-tyrosine for selective analyzing tyrosinase. Anal Chim Acta 840:87–92. https://doi.org/10.1016/j.aca.2014.05.050

    Article  CAS  PubMed  Google Scholar 

  36. Qu Z, Na W, Liu X, Liu H, Su X (2018) A novel fluorescence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots. Anal Chim Acta 997:52–59. https://doi.org/10.1016/j.aca.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  37. Yan X, Hu T, Wang L, Zhang L, Su X (2016) Near-infrared fluorescence nanoprobe for enzyme-substrate system sensing and in vitro imaging. Biosens Bioelectron 79:922–929. https://doi.org/10.1016/j.bios.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  38. Sidhu JS, Singh A, Garg N, Kaur N, Singh N (2018) A highly selective naphthalimide-based ratiometric fluorescent probe for the recognition of tyrosinase and cellular imaging. Analyst 143(18):4476–4483. https://doi.org/10.1039/c8an01136b

    Article  CAS  Google Scholar 

  39. Sun JY, Mel H, Wang SF, Gao F (2016) Two-photon semiconducting polymer dots with dual-emission for Ratiometric fluorescent sensing and bioimaging of Tyrosinase activity. Anal Chem 88(14):7372–7377. https://doi.org/10.1021/acs.analchem.6b01929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21173102 and 21473072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Bi.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Yu, T. & Bi, L. A dual-channel ratiometric fluorescent probe for determination of the activity of tyrosinase using nitrogen-doped graphene quantum dots and dopamine-modified CdTe quantum dots. Microchim Acta 186, 635 (2019). https://doi.org/10.1007/s00604-019-3733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3733-x

Keywords

Navigation