Skip to main content

Advertisement

Log in

Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019)

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Fluorescence resonance energy transfer, one of the most powerful phenomena for elucidating molecular interactions, has been extensively utilized as a biosensing tool to provide accurate information at the nanoscale. Numerous aptamer- and nanomaterial-based FRET bioassays has been developed for detection of a large variety of molecules. Affinity probes are widely used in biosensors, in which aptamers have emerged as advantageous biorecognition elements, due to their chemical and structural stability. Similarly, optically active nanomaterials offer significant advantages over conventional organic dyes, such as superior photophysical properties, large surface-to-volume ratios, photostability, and longer shelf life. In this report (with 175 references), the use of aptamer-modified nanomaterials as FRET couples is reviewed: quantum dots, upconverting nanoparticles, graphene, reduced graphene oxide, gold nanoparticles, molybdenum disulfide, graphene quantum dots, carbon dots, and metal-organic frameworks. Tabulated summaries provide the reader with useful information on the current state of research in the field.

Schematic representation of a fluorescence resonance energy transfer-based aptamer nanoprobe in the absence and presence of a given target molecule (analyte). Structures are not drawn to their original scales

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Adenosine

AFP:

Alphafeto protein

AuNPs:

Gold nanoparticles

AuNRs:

Gold nanorods

AuNCs:

Gold nanoclusters

BHQ1:

Black Hole Quencher 1

BHQ2:

Black Hole Quencher 2

cDNA:

Complementary DNA

CDs:

Carbon Dots

CEA:

Carcinoembryonic antigen

CTC:

Circulating tumor cells

EpCAM:

Epithelial cell adhesion molecule

FAM:

5′-carboxyfluorescein

FRET:

Förster resonance energy transfer

GA:

Glycated albumin

GO:

Graphene oxide

GQDs:

Graphene quantum dots

LRET:

Luminescence resonance energy transfer

LSPR:

Localized surface plasmon resonance

MFNs:

Magnetic fluorescent nanocomposite

MNPs:

Metal nanoparticles

MOFs:

Metal-organic frameworks

MoS2:

Molybdenum disulfide

NIR:

Near-infrared Region

NSET:

Nanosurface resonance energy transfer

OTA:

Ochratoxin

QD:

Quantum dot

RB:

Rhodamine B

rGO:

Reduced Graphene Oxide

rQD:

Red-emitting QDs

gQDs:

Green-emitting QDs

SELEX:

Systematic evolution of ligands by exponential enrichment

ssDNA:

Single-stranded DNA

TMD-NSs:

Transition metal dichalcogenides nanosheets

UCNP:

Upconverting nanoparticles

UV:

Ultraviolet

References

  1. Qiu X, Hildebrandt N (2015) Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer. ACS Nano 9:8449–8457. https://doi.org/10.1021/acsnano.5b03364

    Article  CAS  PubMed  Google Scholar 

  2. He L, Lu D-Q, Liang H et al (2017) Fluorescence Resonance Energy Transfer-Based DNA Tetrahedron Nanotweezer for Highly Reliable Detection of Tumor-Related mRNA in Living Cells. ACS Nano 11:4060–4066. https://doi.org/10.1021/acsnano.7b00725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Medintz I, Hildebrandt N (2014) FRET - Förster Resonance Energy Transfer. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  4. Clegg RM (1992) [18] Fluorescence resonance energy transfer and nucleic acids. In: Methods in Enzymology. Academic Press, pp 353–388

  5. Rowland CE, Brown CW, Medintz IL, Delehanty JB (2015) Intracellular FRET-based probes: a review. Methods Appl Fluoresc 3:042006. https://doi.org/10.1088/2050-6120/3/4/042006

    Article  CAS  PubMed  Google Scholar 

  6. Hussain SA (2012) An Introduction to Fluorescence Resonance Energy Transfer (FRET). In: arXiv.org. https://arxiv.org/abs/0908.1815

  7. Gust A, Zander A, Gietl A et al (2014) A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research. Molecules 19:15824–15865. https://doi.org/10.3390/molecules191015824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wen Y, Xing F, He S et al (2010) A graphene-based fluorescent nanoprobe for silver(i) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46:2596. https://doi.org/10.1039/b924832c

    Article  CAS  Google Scholar 

  9. Kurt H, Alpaslan E, Yildiz B et al (2017) Conformation-mediated Förster resonance energy transfer (FRET) in blue-emitting polyvinylpyrrolidone (PVP)-passivated zinc oxide (ZnO) nanoparticles. J Colloid Interface Sci 488:348–355. https://doi.org/10.1016/j.jcis.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  10. Das P, Sedighi A, Krull UJ (2018) Cancer biomarker determination by resonance energy transfer using functional fluorescent nanoprobes. Anal Chim Acta 1041:1–24. https://doi.org/10.1016/j.aca.2018.07.060

    Article  CAS  PubMed  Google Scholar 

  11. Amiri S, Ahmadi R, Salimi A et al (2018) Ultrasensitive and highly selective FRET aptasensor for Hg 2+ measurement in fish samples using carbon dots/AuNPs as donor/acceptor platform. New J Chem 42:16027–16035. https://doi.org/10.1039/C8NJ02781A

    Article  CAS  Google Scholar 

  12. Kumar YVVA, R RM, A J et al (2018) Development of a FRET-based fluorescence aptasensor for the detection of aflatoxin B1 in contaminated food grain samples. RSC Adv 8:10465–10473. https://doi.org/10.1039/C8RA00317C

    Article  Google Scholar 

  13. Hildebrandt N, Spillmann CM, Algar WR et al (2017) Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev. 117:536–711. https://doi.org/10.1021/acs.chemrev.6b00030

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, He M, Xu D, Liu Z (2014) Graphene materials-based energy acceptor systems and sensors. J Photochem Photobiol C Photochem Rev. 18:1–17. https://doi.org/10.1016/j.jphotochemrev.2013.10.002

    Article  CAS  Google Scholar 

  15. Geißler D, Linden S, Liermann K et al (2014) Lanthanides and Quantum Dots as Förster Resonance Energy Transfer Agents for Diagnostics and Cellular Imaging. Inorg Chem 53:1824–1838. https://doi.org/10.1021/ic4017883

    Article  CAS  PubMed  Google Scholar 

  16. Zu F, Yan F, Bai Z et al (2017) The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 184:1899–1914

    Article  CAS  Google Scholar 

  17. Khan IM, Zhao S, Niazi S et al (2018) Silver nanoclusters based FRET aptasensor for sensitive and selective fluorescent detection of T-2 toxin. Sensors Actuators B Chem 277:328–335. https://doi.org/10.1016/j.snb.2018.09.021

    Article  CAS  Google Scholar 

  18. Marx V (2017) Probes: FRET sensor design and optimization. Nat Methods 14:949–953. https://doi.org/10.1038/nmeth.4434

    Article  CAS  PubMed  Google Scholar 

  19. Arruebo M, Valladares M, González-Fernández Á (2009) Antibody-Conjugated Nanoparticles for Biomedical Applications. J Nanomater 2009:1–24. https://doi.org/10.1155/2009/439389

    Article  CAS  Google Scholar 

  20. Yüce M, Ullah N, Budak H (2015) Trends in aptamer selection methods and applications. Analyst 140:5379–5399. https://doi.org/10.1039/C5AN00954E

    Article  CAS  PubMed  Google Scholar 

  21. Yüce M, Kurt H (2017) How to make nanobiosensors: surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv 7:49386–49403. https://doi.org/10.1039/C7RA10479K

    Article  Google Scholar 

  22. Mallikaratchy P (2017) Evolution of Complex Target SELEX to Identify Aptamers against Mammalian Cell-Surface Antigens. Molecules 22:215. https://doi.org/10.3390/molecules22020215

    Article  CAS  PubMed Central  Google Scholar 

  23. Sun N, Ding Y, Tao Z et al (2018) Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation. Food Chem 257:289–294. https://doi.org/10.1016/j.foodchem.2018.02.148

    Article  CAS  PubMed  Google Scholar 

  24. Srinivasan S, Ranganathan V, DeRosa MC, Murari BM (2018) Label-free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurium. Anal Biochem 559:17–23. https://doi.org/10.1016/j.ab.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  25. Yüce M, Kurt H, Hussain B, Budak H (2018) Systematic Evolution of Ligands by Exponential Enrichment for Aptamer Selection. In: Sarmento B, Das NJ (eds) Biomedical Applications of Functionalized Nanomaterials, 1st edn. Elsevier, pp 211–243

  26. Kurt H, Yüce M, Hussain B, Budak H (2016) Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens Bioelectron 81:280–286. https://doi.org/10.1016/j.bios.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  27. Yüce M, Kurt H, Hussain B et al (2018) Exploiting Stokes and anti-Stokes type emission profiles of aptamer-functionalized luminescent nanoprobes for multiplex sensing applications. ChemistrySelect 3:5814–5823. https://doi.org/10.1002/slct.201801008

    Article  CAS  Google Scholar 

  28. Woo H-M, Lee J-M, Yim S, Jeong Y-J (2015) Isolation of Single-Stranded DNA Aptamers That Distinguish Influenza Virus Hemagglutinin Subtype H1 from H5. PLoS One 10:e0125060. https://doi.org/10.1371/journal.pone.0125060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim M, Um H-J, Bang S et al (2009) Arsenic Removal from Vietnamese Groundwater Using the Arsenic-Binding DNA Aptamer. Environ Sci Technol 43:9335–9340. https://doi.org/10.1021/es902407g

    Article  CAS  PubMed  Google Scholar 

  30. Savory N, Lednor D, Tsukakoshi K et al (2013) In silico maturation of binding-specificity of DNA aptamers against Proteus mirabilis. Biotechnol Bioeng 110:2573–2580. https://doi.org/10.1002/bit.24922

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Uzawa T, Tanaka T et al (2013) In vitro selection of peptide aptamers with affinity to single-wall carbon nanotubes using a ribosome display. Biotechnol Lett 35:39–45. https://doi.org/10.1007/s10529-012-1049-6

    Article  CAS  PubMed  Google Scholar 

  32. Lim YC, Kouzani AZ, Duan W (2009) Aptasensors Design Considerations. In: Communications in Computer and Information Science, pp 118–127

    Google Scholar 

  33. Chandra P, Noh H-B, Won M-S, Shim Y-B (2011) Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens Bioelectron 26:4442–4449. https://doi.org/10.1016/j.bios.2011.04.060

    Article  CAS  PubMed  Google Scholar 

  34. Zhao W, Chiuman W, Brook MA, Li Y (2007) Simple and Rapid Colorimetric Biosensors Based on DNA Aptamer and Noncrosslinking Gold Nanoparticle Aggregation. ChemBioChem 8:727–731. https://doi.org/10.1002/cbic.200700014

    Article  CAS  PubMed  Google Scholar 

  35. Yang CJ, Jockusch S, Vicens M et al (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci 102:17278–17283. https://doi.org/10.1073/pnas.0508821102

    Article  CAS  PubMed  Google Scholar 

  36. Khati M (2010) The future of aptamers in medicine. J Clin Pathol 63:480–487. https://doi.org/10.1136/jcp.2008.062786

    Article  CAS  PubMed  Google Scholar 

  37. Dong H, Gao W, Yan F et al (2010) Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules. Anal Chem 82:5511–5517. https://doi.org/10.1021/ac100852z

    Article  CAS  PubMed  Google Scholar 

  38. Darbandi A, Datta D, Patel K et al (2017) Molecular beacon anchored onto a graphene oxide substrate. Nanotechnology 28:375501. https://doi.org/10.1088/1361-6528/aa7e50

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh S, Datta D, Cheema M et al (2017) Aptasensor based optical detection of glycated albumin for diabetes mellitus diagnosis. Nanotechnology 28:435505. https://doi.org/10.1088/1361-6528/aa893a

    Article  CAS  PubMed  Google Scholar 

  40. Li S, Xu L, Ma W et al (2016) Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. J Am Chem Soc 138:306–312. https://doi.org/10.1021/jacs.5b10309

    Article  CAS  PubMed  Google Scholar 

  41. Li M, Zhou X, Guo S, Wu N (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74. https://doi.org/10.1016/j.bios.2012.11.039

    Article  CAS  PubMed  Google Scholar 

  42. Jin B, Wang S, Lin M et al (2017) Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 90:525–533. https://doi.org/10.1016/j.bios.2016.10.029

    Article  CAS  PubMed  Google Scholar 

  43. Yang W, Zhang G, Weng W et al (2014) Signal on fluorescence biosensor for MMP-2 based on FRET between semiconducting polymer dots and a metal organic framework. RSC Adv 4:58852–58857. https://doi.org/10.1039/C4RA12478B

    Article  CAS  Google Scholar 

  44. Wang Y, Bao L, Liu Z, Pang D-W (2011) Aptamer Biosensor Based on Fluorescence Resonance Energy Transfer from Upconverting Phosphors to Carbon Nanoparticles for Thrombin Detection in Human Plasma. Anal Chem 83:8130–8137. https://doi.org/10.1021/ac201631b

    Article  CAS  PubMed  Google Scholar 

  45. Li X-HH, Sun W-MM, Wu J et al (2018) An ultrasensitive fluorescence aptasensor for carcino-embryonic antigen detection based on fluorescence resonance energy transfer from upconversion phosphors to Au nanoparticles. Anal Methods 10:1552–1559. https://doi.org/10.1039/C7AY02803B

    Article  CAS  Google Scholar 

  46. Ueno Y, Furukawa K, Tin A, Hibino H (2015) On-chip FRET Graphene Oxide Aptasensor: Quantitative Evaluation of Enhanced Sensitivity by Aptamer with a Double-stranded DNA Spacer. Anal Sci 31:875–879. https://doi.org/10.2116/analsci.31.875

    Article  CAS  PubMed  Google Scholar 

  47. Jiang H, Ling K, Tao X, Zhang Q (2015) Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Biosens Bioelectron 70:299–303. https://doi.org/10.1016/j.bios.2015.03.054

    Article  CAS  PubMed  Google Scholar 

  48. Kim B, Malioutov DM, Varshney KR, Weller A (2017) Proceedings of the 2017 ICML Workshop on Human Interpretability in Machine Learning (WHI 2017). New J Chem 37:3998. https://doi.org/10.1039/c3nj00594a

  49. Ahar MJ (2017) A Review on Aptamer-Conjugated Quantum Dot Nanosystems for Cancer Imaging and Theranostic. J Nanomedicine Res 5. https://doi.org/10.15406/jnmr.2017.05.00117

  50. Michalet X (2005) Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80-) 307:538–544. https://doi.org/10.1126/science.1104274

    Article  CAS  Google Scholar 

  51. Zeng Z, Garoufalis CS, Terzis AF, Baskoutas S (2013) Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thickness, impurity, and dielectric environment. J Appl Phys 114:023510. https://doi.org/10.1063/1.4813094

    Article  CAS  Google Scholar 

  52. Vasudevan D, Gaddam RR, Trinchi A, Cole I (2015) Core–shell quantum dots: Properties and applications. J Alloys Compd 636:395–404. https://doi.org/10.1016/j.jallcom.2015.02.102

    Article  CAS  Google Scholar 

  53. Fang B-Y, Wang C-Y, Li C et al (2017) Amplified using DNase I and aptamer/graphene oxide for sensing prostate specific antigen in human serum. Sensors Actuators B Chem 244:928–933. https://doi.org/10.1016/j.snb.2017.01.045

    Article  CAS  Google Scholar 

  54. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446. https://doi.org/10.1038/nmat1390

    Article  CAS  PubMed  Google Scholar 

  55. Zhang C, Ding C, Zhou G et al (2017) One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing. Anal Chim Acta 957:63–69. https://doi.org/10.1016/j.aca.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  56. Arvand M, Mirroshandel AA (2017) Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l -cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Biosens Bioelectron 96:324–331. https://doi.org/10.1016/j.bios.2017.05.028

    Article  CAS  PubMed  Google Scholar 

  57. Duan N, Wu S, Dai S et al (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182:917–923. https://doi.org/10.1007/s00604-014-1406-3

    Article  CAS  Google Scholar 

  58. Das P, Krull UJ (2017) Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. Analyst 142:3132–3135. https://doi.org/10.1039/c7an00624a

    Article  CAS  PubMed  Google Scholar 

  59. Sabet FS, Hosseini M, Khabbaz H et al (2017) FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem 220:527–532. https://doi.org/10.1016/j.foodchem.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  60. Hildebrandt N, Charbonnière LJ, Beck M et al (2005) Quantum Dots as Efficient Energy Acceptors in a Time-Resolved Fluoroimmunoassay. Angew Chemie Int Ed 44:7612–7615. https://doi.org/10.1002/anie.200501552

    Article  CAS  Google Scholar 

  61. So M-K, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343. https://doi.org/10.1038/nbt1188

    Article  CAS  PubMed  Google Scholar 

  62. Doughan S, Uddayasankar U, Krull UJ (2015) A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors. Anal Chim Acta 878:1–8. https://doi.org/10.1016/j.aca.2015.04.036

    Article  CAS  PubMed  Google Scholar 

  63. Qiu X, Guo J, Jin Z et al (2017) Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning. Small 13:1700332. https://doi.org/10.1002/smll.201700332

    Article  CAS  Google Scholar 

  64. Qiu X, Guo J, Xu J, Hildebrandt N (2018) Three-Dimensional FRET Multiplexing for DNA Quantification with Attomolar Detection Limits. J Phys Chem Lett 9:4379–4384. https://doi.org/10.1021/acs.jpclett.8b01944

    Article  CAS  PubMed  Google Scholar 

  65. Qiu X, Xu J, Guo J et al (2018) Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. Chem Sci 9:8046–8055. https://doi.org/10.1039/C8SC03121E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo J, Qiu X, Mingoes C et al (2019) Conformational Details of Quantum Dot-DNA Resolved by Förster Resonance Energy Transfer Lifetime Nanoruler. ACS Nano 13:505–514. https://doi.org/10.1021/acsnano.8b07137

    Article  CAS  PubMed  Google Scholar 

  67. Doughan S, Han Y, Uddayasankar U, Krull UJ (2014) Solid-phase covalent immobilization of upconverting nanoparticles for biosensing by luminescence resonance energy transfer. ACS Appl Mater Interfaces 6:14061–14068. https://doi.org/10.1021/am503391m

  68. Li Y, Xu J, Wang L et al (2016) Aptamer-based fluorescent detection of bisphenol A using nonconjugated gold nanoparticles and CdTe quantum dots. Sensors Actuators, B Chem 222:815–822. https://doi.org/10.1016/j.snb.2015.08.130

    Article  Google Scholar 

  69. Tianyu H, Xu Y, Weidan N, Xingguang S (2016) Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183:2131–2137. https://doi.org/10.1007/s00604-016-1831-6

    Article  CAS  Google Scholar 

  70. Lu X, Wang C, Qian J et al (2019) Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots. Anal Chim Acta 1047:163–171. https://doi.org/10.1016/j.aca.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  71. Kavosi B, Navaee A, Salimi A (2018) Amplified fluorescence resonance energy transfer sensing of prostate specific antigen based on aggregation of CdTe QDs/antibody and aptamer decorated of AuNPs-PAMAM dendrimer. J Lumin 204:368–374. https://doi.org/10.1016/j.jlumin.2018.08.012

    Article  CAS  Google Scholar 

  72. Lu Z, Chen X, Hu W (2017) A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection. Sensors Actuators B Chem 246:61–67. https://doi.org/10.1016/j.snb.2017.02.062

    Article  CAS  Google Scholar 

  73. Qiu Z, Shu J, He Y et al (2017) CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosens Bioelectron 87:18–24. https://doi.org/10.1016/j.bios.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  74. Lu Z, Chen X, Wang Y et al (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578. https://doi.org/10.1007/s00604-014-1360-0

    Article  CAS  Google Scholar 

  75. Xiang L, Tang J (2017) QD-aptamer as a donor for a FRET-based chemosensor and evaluation of affinity between acetamiprid and its aptamer. RSC Adv 7:8332–8337. https://doi.org/10.1039/c6ra26118c

    Article  CAS  Google Scholar 

  76. Li Y, Su R, Xu J et al (2018) Aptamers-Based Sensing Strategy for 17?-Estradiol Through Fluorescence Resonance Energy Transfer Between Oppositely Charged CdTe Quantum Dots and Gold Nanoparticles. J Nanosci Nanotechnol 18:1517–1527. https://doi.org/10.1166/jnn.2018.14235

    Article  CAS  PubMed  Google Scholar 

  77. Hu W, Chen Q, Li H et al (2016) Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH 2 -NaYF 4: Yb, Ho@SiO 2 and Au nanoparticles. Biosens Bioelectron 80:398–404. https://doi.org/10.1016/j.bios.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  78. Tu L, Liu X, Wu F, Zhang H (2015) Excitation energy migration dynamics in upconversion nanomaterials. Chem Soc Rev. 44:1331–1345. https://doi.org/10.1039/c4cs00168k

    Article  CAS  PubMed  Google Scholar 

  79. Zhou B, Shi B, Jin D, Liu X (2015) Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10:924–936

    Article  CAS  Google Scholar 

  80. Chen H, Guan Y, Wang S et al (2014) Turn-On Detection of a Cancer Marker Based on Near-Infrared Luminescence Energy Transfer from NaYF 4: Yb,Tm/NaGdF 4 Core–Shell Upconverting Nanoparticles to Gold Nanorods. Langmuir 30:13085–13091. https://doi.org/10.1021/la502753e

    Article  CAS  PubMed  Google Scholar 

  81. Li C, Zuo J, Li Q et al (2017) One-step in situ solid-substrate-based whole blood immunoassay based on FRET between upconversion and gold nanoparticles. Biosens Bioelectron 92:335–341. https://doi.org/10.1016/j.bios.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  82. Chen H, Yuan F, Wang S et al (2013) Aptamer-based sensing for thrombin in red region via fluorescence resonant energy transfer between NaYF4: Yb,Er upconversion nanoparticles and gold nanorods. Biosens Bioelectron 48:19–25. https://doi.org/10.1016/j.bios.2013.03.083

    Article  CAS  PubMed  Google Scholar 

  83. Hwang S-H, Im S-G, Sung H et al (2014) Upconversion nanoparticle-based Förster resonance energy transfer for detecting the IS6110 sequence of Mycobacterium tuberculosis complex in sputum. Biosens Bioelectron 53:112–116. https://doi.org/10.1016/j.bios.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  84. Vilela P, El-Sagheer A, Millar TM et al (2017) Graphene Oxide-Upconversion Nanoparticle Based Optical Sensors for Targeted Detection of mRNA Biomarkers Present in Alzheimer’s Disease and Prostate Cancer. ACS Sensors 2:52–56. https://doi.org/10.1021/acssensors.6b00651

    Article  CAS  PubMed  Google Scholar 

  85. Ye WW, Tsang M-K, Liu X et al (2014) Upconversion Luminescence Resonance Energy Transfer (LRET)-Based Biosensor for Rapid and Ultrasensitive Detection of Avian Influenza Virus H7 Subtype. Small 10:2390–2397. https://doi.org/10.1002/smll.201303766

    Article  CAS  PubMed  Google Scholar 

  86. Long Q, Li H, Zhang Y, Yao S (2015) Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens Bioelectron 68:168–174. https://doi.org/10.1016/j.bios.2014.12.046

    Article  CAS  PubMed  Google Scholar 

  87. Li H, Sun D, Liu Y, Liu Z (2014) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55:149–156. https://doi.org/10.1016/j.bios.2013.11.079

    Article  CAS  PubMed  Google Scholar 

  88. Cheng K, Zhang J, Zhang L et al (2017) Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn 2+ − doped NaYF 4: Yb, Tm upconverting nanoparticles to gold nanorods. Spectrochim Acta Part A Mol Biomol Spectrosc 171:168–173. https://doi.org/10.1016/j.saa.2016.08.012

    Article  CAS  Google Scholar 

  89. Hao T, Wu X, Xu L et al (2017) Ultrasensitive Detection of Prostate-Specific Antigen and Thrombin Based on Gold-Upconversion Nanoparticle Assembled Pyramids. Small 13:1603944. https://doi.org/10.1002/smll.201603944

    Article  CAS  Google Scholar 

  90. Qu A, Wu X, Xu L et al (2017) SERS- and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale 9:3865–3872. https://doi.org/10.1039/C6NR09114H

    Article  CAS  PubMed  Google Scholar 

  91. Zhang H, Fang C, Wu S et al (2015) Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline. Anal Biochem 489:44–49. https://doi.org/10.1016/j.ab.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  92. Liu Y, Ouyang Q, Li H et al (2018) Turn-On Fluoresence Sensor for Hg 2+ in Food Based on FRET between Aptamers-Functionalized Upconversion Nanoparticles and Gold Nanoparticles. J Agric Food Chem 66:6188–6195. https://doi.org/10.1021/acs.jafc.8b00546

    Article  CAS  PubMed  Google Scholar 

  93. Wang Y, Wei Z, Luo X et al (2019) An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Talanta 195:33–39. https://doi.org/10.1016/j.talanta.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  94. Wu S, Duan N, Zhang H, Wang Z (2015) Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor. Anal Bioanal Chem 407:1303–1312. https://doi.org/10.1007/s00216-014-8378-3

    Article  CAS  PubMed  Google Scholar 

  95. Wu Z, Xu E, Jin Z, Irudayaraj J (2018) An ultrasensitive aptasensor based on fluorescent resonant energy transfer and exonuclease-assisted target recycling for patulin detection. Food Chem 249:136–142. https://doi.org/10.1016/j.foodchem.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  96. Li H, Shi L, en SD et al (2016) Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection. Biosens Bioelectron 86:791–798. https://doi.org/10.1016/j.bios.2016.07.070

    Article  CAS  PubMed  Google Scholar 

  97. Dai S, Wu S, Duan N, Wang Z (2016) A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods. Microchim Acta 183:1909–1916. https://doi.org/10.1007/s00604-016-1820-9

    Article  CAS  Google Scholar 

  98. Smith NM, Amrane S, Rosu F et al (2012) Mercury–thymine interaction with a chair type G-quadruplex architecture. Chem Commun 48:11464. https://doi.org/10.1039/c2cc36481f

    Article  CAS  Google Scholar 

  99. Büning-Pfaue H (2003) Analysis of water in food by near infrared spectroscopy. Food Chem 82:107–115. https://doi.org/10.1016/S0308-8146(02)00583-6

    Article  CAS  Google Scholar 

  100. Kong L, Li Y, Ma C et al (2018) Sensitive immunoassay of von Willebrand factor based on fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticles. Colloids Surfaces B Biointerfaces 165:286–292. https://doi.org/10.1016/j.colsurfb.2018.02.049

    Article  CAS  PubMed  Google Scholar 

  101. Gao X, Zhang B, Zhang Q et al (2018) The influence of combination mode on the structure and properties of graphene quantum dot-porphyrin composites. Colloids Surfaces B Biointerfaces 172:207–212. https://doi.org/10.1016/j.colsurfb.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  102. He Y, Wen X, Zhang B, Fan Z (2018) Novel aptasensor for the ultrasensitive detection of kanamycin based on grapheneoxide quantum-dot-linked single-stranded DNA-binding protein. Sensors Actuators, B Chem 265:20–26. https://doi.org/10.1016/j.snb.2018.03.029

    Article  CAS  Google Scholar 

  103. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686. https://doi.org/10.1039/c2cc00110a

    Article  CAS  Google Scholar 

  104. Shi J, Chan C, Pang Y et al (2015) A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron 67:595–600. https://doi.org/10.1016/j.bios.2014.09.059

    Article  CAS  PubMed  Google Scholar 

  105. Shen J, Zhu Y, Yang X et al (2012) One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 36:97–101. https://doi.org/10.1039/C1NJ20658C

    Article  CAS  Google Scholar 

  106. Shi J, Lyu J, Tian F, Yang M (2017) A fluorescence turn-on biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for epithelial cell adhesion molecule (EpCAM) detection. Biosens Bioelectron 93:182–188. https://doi.org/10.1016/j.bios.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  107. Pfeiffer F, Mayer G (2016) Selection and Biosensor Application of Aptamers for Small Molecules. Front Chem 4(25). https://doi.org/10.3389/fchem.2016.00025

  108. Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99. https://doi.org/10.1002/mnfr.200600137

    Article  PubMed  Google Scholar 

  109. Cao L-H, Li H-Y, Xu H et al (2017) Diverse dissolution–recrystallization structural transformations and sequential Förster resonance energy transfer behavior of a luminescent porous Cd-MOF. Dalt Trans 46:11656–11663. https://doi.org/10.1039/C7DT02697H

    Article  CAS  Google Scholar 

  110. Tian J, Wei W, Wang J et al (2018) Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A. Anal Chim Acta 1000:265–272. https://doi.org/10.1016/j.aca.2017.08.018

    Article  CAS  PubMed  Google Scholar 

  111. Cheng X, Cen Y, Xu G et al (2018) Aptamer based fluorometric determination of ATP by exploiting the FRET between carbon dots and graphene oxide. Microchim Acta 185(144). https://doi.org/10.1007/s00604-018-2683-z

  112. Wu X, Song Y, Yan X et al (2017) Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens Bioelectron 94:292–297. https://doi.org/10.1016/j.bios.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  113. Mohammadi S, Salimi A, Hamd-Ghadareh S et al (2018) A FRET immunosensor for sensitive detection of CA 15–3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Anal Biochem 557:18–26. https://doi.org/10.1016/j.ab.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  114. Zhu S, Song Y, Zhao X et al (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381

    Article  CAS  Google Scholar 

  115. Wang X, Xu G, Wei F et al (2017) Highly sensitive and selective aptasensor for detection of adenosine based on fluorescence resonance energy transfer from carbon dots to nano-graphite. J Colloid Interface Sci 508:455–461. https://doi.org/10.1016/j.jcis.2017.07.028

    Article  CAS  PubMed  Google Scholar 

  116. Zhao Q, Zhou C, Yang Q et al (2019) A FRET-based fluorescent probe for hydrogen peroxide based on the use of carbon quantum dots conjugated to gold nanoclusters. Microchim Acta 186(294). https://doi.org/10.1007/s00604-019-3398-5

  117. Qian ZS, Shan XY, Chai LJ et al (2015) A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens Bioelectron 68:225–231. https://doi.org/10.1016/j.bios.2014.12.057

    Article  CAS  PubMed  Google Scholar 

  118. Saberi Z, Rezaei B, Faroukhpour H, Ensafi AA (2018) A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots. Microchim Acta 185:303. https://doi.org/10.1007/s00604-018-2842-2

    Article  CAS  Google Scholar 

  119. Shen X, Xu L, Zhu W et al (2017) A turn-on fluorescence aptasensor based on carbon dots for sensitive detection of adenosine. New J Chem 41:9230–9235. https://doi.org/10.1039/C7NJ02384G

    Article  CAS  Google Scholar 

  120. Xu M, Gao Z, Zhou Q et al (2016) Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles. Biosens Bioelectron 86:978–984. https://doi.org/10.1016/j.bios.2016.07.105

    Article  CAS  PubMed  Google Scholar 

  121. Zhu L, Xu G, Song Q et al (2016) Highly sensitive determination of dopamine by a turn-on fluorescent biosensor based on aptamer labeled carbon dots and nano-graphite. Sensors Actuators B Chem 231:506–512. https://doi.org/10.1016/j.snb.2016.03.084

    Article  CAS  Google Scholar 

  122. Wang B, Chen Y, Wu Y et al (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB 1. Biosens Bioelectron 78:23–30. https://doi.org/10.1016/j.bios.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  123. Wang Y, Ma T, Ma S et al (2017) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2nanosheets and carbon dots. Microchim Acta 184:203–210. https://doi.org/10.1007/s00604-016-2011-4

    Article  CAS  Google Scholar 

  124. Zhu X, Zheng H, Wei X et al (2013) Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun 49:1276. https://doi.org/10.1039/c2cc36661d

    Article  CAS  Google Scholar 

  125. McKinlay AC, Morris RE, Horcajada P et al (2010) BioMOFs: Metal-Organic Frameworks for Biological and Medical Applications. Angew Chemie Int Ed 49:6260–6266. https://doi.org/10.1002/anie.201000048

    Article  CAS  Google Scholar 

  126. Ma D, Wang W, Li Y et al (2010) In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium–organic framework capable of selective sensing of small molecules. CrystEngComm 12:4372. https://doi.org/10.1039/c0ce00135j

    Article  CAS  Google Scholar 

  127. Qu F, Sun C, Lv X, You J (2018) A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Mikrochim Acta 185:359. https://doi.org/10.1007/s00604-018-2888-1

    Article  CAS  PubMed  Google Scholar 

  128. Lee J, Kim J, Kim S, Min DH (2016) Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 105:275–287

    Article  CAS  Google Scholar 

  129. Zou W, Gong F, Gu T et al (2018) An efficient strategy for sensing pyrophosphate based on nitrogen-rich quantum dots combined with graphene oxide. Microchem J 141:466–472. https://doi.org/10.1016/j.microc.2018.06.004

    Article  CAS  Google Scholar 

  130. Dhiman A, Kalra P, Bansal V et al (2017) Aptamer-based point-of-care diagnostic platforms. Sensors Actuators, B Chem. 246:535–553

    Article  CAS  Google Scholar 

  131. Lee J, Samson AAS, Yim Y et al (2019) A FRET assay for the quantitation of inhibitors of exonuclease EcoRV by using parchment paper inkjet-printed with graphene oxide and FAM-labelled DNA. Microchim Acta 186(211). https://doi.org/10.1007/s00604-019-3317-9

  132. Alonso-Cristobal P, Vilela P, El-Sagheer A et al (2015) Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide. ACS Appl Mater Interfaces 7:12422–12429. https://doi.org/10.1021/am507591u

    Article  CAS  PubMed  Google Scholar 

  133. Furukawa K, Ueno Y, Takamura M, Hibino H (2016) Graphene FRET Aptasensor. ACS Sensors 1:710–716. https://doi.org/10.1021/acssensors.6b00191

    Article  CAS  Google Scholar 

  134. Tian F, Lyu J, Shi J, Yang M (2017) Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens Bioelectron 89:123–135. https://doi.org/10.1016/j.bios.2016.06.046

    Article  CAS  PubMed  Google Scholar 

  135. García-Cañas V, Simó C, Herrero M et al (2012) Present and Future Challenges in Food Analysis: Foodomics. Anal Chem 84:10150–10159. https://doi.org/10.1021/ac301680q

    Article  CAS  PubMed  Google Scholar 

  136. Arnold SM, Clark KE, Staples CA et al (2013) Relevance of drinking water as a source of human exposure to bisphenol A. J Expo Sci Environ Epidemiol 23:137–144. https://doi.org/10.1038/jes.2012.66

    Article  CAS  PubMed  Google Scholar 

  137. Zhu Y, Cai Y, Xu L et al (2015) Building An Aptamer/Graphene Oxide FRET Biosensor for One-Step Detection of Bisphenol A. ACS Appl Mater Interfaces 7:7492–7496. https://doi.org/10.1021/acsami.5b00199

    Article  CAS  PubMed  Google Scholar 

  138. Zhang H, Zhang H, Aldalbahi A et al (2017) Fluorescent biosensors enabled by graphene and graphene oxide. Biosens Bioelectron 89:96–106. https://doi.org/10.1016/j.bios.2016.07.030

    Article  CAS  PubMed  Google Scholar 

  139. Zhou ZM, Zhou J, Chen J et al (2014) Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide. Biosens Bioelectron 59:397–403. https://doi.org/10.1016/j.bios.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  140. Kenry GA, Zhang X et al (2016) Highly Sensitive and Selective Aptamer-Based Fluorescence Detection of a Malarial Biomarker Using Single-Layer MoS2Nanosheets. ACS Sensors 1:1315–1321. https://doi.org/10.1021/acssensors.6b00449

    Article  CAS  Google Scholar 

  141. Singh P, Gupta R, Sinha M et al (2016) MoS2based digital response platform for aptamer based fluorescent detection of pathogens. Microchim Acta 183:1501–1506. https://doi.org/10.1007/s00604-016-1762-2

    Article  CAS  Google Scholar 

  142. Yuan Y, Li R, Liu Z (2014) Establishing water-soluble layered WS2 nanosheet as a platform for biosensing. Anal Chem 86:3610–3615. https://doi.org/10.1021/ac5002096

    Article  CAS  PubMed  Google Scholar 

  143. Zhang Y, Zheng B, Zhu C et al (2015) Single-Layer Transition Metal Dichalcogenide Nanosheet-Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Adv Mater 27:935–939. https://doi.org/10.1002/adma.201404568

    Article  CAS  PubMed  Google Scholar 

  144. Ge J, Ou E-C, Yu R-Q, Chu X (2014) A novel aptameric nanobiosensor based on the self-assembled DNA–MoS 2 nanosheet architecture for biomolecule detection. J Mater Chem B 2:625–628. https://doi.org/10.1039/C3TB21570A

    Article  CAS  PubMed  Google Scholar 

  145. Cui F, Ji J, Sun J et al (2019) A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. Anal Bioanal Chem 411:985–995. https://doi.org/10.1007/s00216-018-1501-0

    Article  CAS  PubMed  Google Scholar 

  146. Gao L, Li Q, Deng Z et al (2017) Highly sensitive protein detection via covalently linked aptamer to MoS2 and exonuclease-assisted amplification strategy. Int J Nanomedicine 12:7847–7853. https://doi.org/10.2147/IJN.S145585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jia L, Ding L, Tian J et al (2015) Aptamer loaded MoS 2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nanoscale 7:15953–15961. https://doi.org/10.1039/C5NR02224J

    Article  CAS  PubMed  Google Scholar 

  148. Ravikumar A, Panneerselvam P, Radhakrishnan K et al (2018) MoS 2 nanosheets as an effective fluorescent quencher for successive detection of arsenic ions in aqueous system. Appl Surf Sci 449:31–38. https://doi.org/10.1016/j.apsusc.2017.12.098

    Article  CAS  Google Scholar 

  149. Xu S, Feng X, Gao T et al (2017) Aptamer induced multicoloured Au NCs-MoS 2 “switch on” fluorescence resonance energy transfer biosensor for dual color simultaneous detection of multiple tumor markers by single wavelength excitation. Anal Chim Acta 983:173–180. https://doi.org/10.1016/j.aca.2017.06.023

    Article  CAS  PubMed  Google Scholar 

  150. Chen J, Li Y, Huang Y et al (2019) Fluorometric dopamine assay based on an energy transfer system composed of aptamer-functionalized MoS2 quantum dots and MoS2 nanosheets. Microchim Acta 186(58). https://doi.org/10.1007/s00604-018-3143-5

  151. Esteban-Fernández de Ávila B, Lopez-Ramirez MA, Báez DF et al (2016) Aptamer-Modified Graphene-Based Catalytic Micromotors: Off–On Fluorescent Detection of Ricin. ACS Sensors 1:217–221. https://doi.org/10.1021/acssensors.5b00300

    Article  CAS  Google Scholar 

  152. Guo H, Li J, Li Y et al (2018) A turn-on fluorescent sensor for Hg 2+ detection based on graphene oxide and DNA aptamers. New J Chem 42:11147–11152. https://doi.org/10.1039/C8NJ01709C

    Article  CAS  Google Scholar 

  153. Zhang J, Li Z, Zhao S, Lu Y (2016) Size-dependent modulation of graphene oxide–aptamer interactions for an amplified fluorescence-based detection of aflatoxin B 1 with a tunable dynamic range. Analyst 141:4029–4034. https://doi.org/10.1039/C6AN00368K

    Article  CAS  PubMed  Google Scholar 

  154. Qin J, Cui X, Wu P et al (2017) Fluorescent sensor assay for β-lactamase in milk based on a combination of aptamer and graphene oxide. Food Control 73:726–733. https://doi.org/10.1016/j.foodcont.2016.09.023

    Article  CAS  Google Scholar 

  155. Ha N, Jung I-P, La I et al (2017) Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor. Sci Rep 7(40305). https://doi.org/10.1038/srep40305

  156. Weng X, Neethirajan S (2016) A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron 85:649–656. https://doi.org/10.1016/j.bios.2016.05.072

    Article  CAS  PubMed  Google Scholar 

  157. Sui N, Wang L, Xie F et al (2016) Ultrasensitive aptamer-based thrombin assay based on metal enhanced fluorescence resonance energy transfer. Microchim Acta 183:1563–1570. https://doi.org/10.1007/s00604-016-1774-y

    Article  CAS  Google Scholar 

  158. Persson BNJ, Lang ND (1982) Electron-hole-pair quenching of excited states near a metal. Phys Rev B 26:5409–5415. https://doi.org/10.1103/PhysRevB.26.5409

    Article  CAS  Google Scholar 

  159. Chen C, Midelet C, Bhuckory S et al (2018) Nanosurface Energy Transfer from Long-Lifetime Terbium Donors to Gold Nanoparticles. J Phys Chem C 122:17566–17574. https://doi.org/10.1021/acs.jpcc.8b06539

    Article  CAS  Google Scholar 

  160. Jennings TL, Singh MP, Strouse GF (2006) Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity. J Am Chem Soc 128:5462–5467. https://doi.org/10.1021/ja0583665

    Article  CAS  PubMed  Google Scholar 

  161. Li G, Zeng J, Liu H et al (2019) A fluorometric aptamer nanoprobe for alpha-fetoprotein by exploiting the FRET between 5-carboxyfluorescein and palladium nanoparticles. Microchim Acta 186(314). https://doi.org/10.1007/s00604-019-3403-z

  162. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:1–10. https://doi.org/10.3389/fchem.2014.00063

    Article  CAS  Google Scholar 

  163. Abouna GM (2004) The use of marginal-suboptimal donor organs: a practical solution for organ shortage. Ann Transplant 9:62–66. https://doi.org/10.1021/cm020732l

  164. Yuan F, Chen H, Xu J et al (2014) Aptamer-Based Luminescence Energy Transfer from Near-Infrared-to-Near-Infrared Upconverting Nanoparticles to Gold Nanorods and Its Application for the Detection of Thrombin. Chem - A Eur J 20:2888–2894. https://doi.org/10.1002/chem.201304556

    Article  CAS  Google Scholar 

  165. Xing H, Wei T, Lin X, Dai Z (2018) Near-infrared MnCuInS/ZnS@BSA and urchin-like Au nanoparticle as a novel donor-acceptor pair for enhanced FRET biosensing. Anal Chim Acta 1042:71–78. https://doi.org/10.1016/j.aca.2018.05.048

    Article  CAS  PubMed  Google Scholar 

  166. Zhang R, Sun J, Ji J et al (2019) A novel “OFF-ON” biosensor based on nanosurface energy transfer between gold nanocrosses and graphene quantum dots for intracellular ATP sensing and tracking. Sensors Actuators, B Chem 282:910–916. https://doi.org/10.1016/j.snb.2018.11.141

    Article  CAS  Google Scholar 

  167. Qaddare SH, Salimi A (2017) Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosens Bioelectron 89:773–780. https://doi.org/10.1016/j.bios.2016.10.033

    Article  CAS  PubMed  Google Scholar 

  168. Wang Y, Gan N, Zhou Y et al (2017) Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics. Biosens Bioelectron 87:508–513. https://doi.org/10.1016/j.bios.2016.08.107

    Article  CAS  PubMed  Google Scholar 

  169. Yu M, Wang H, Fu F et al (2017) Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles. Anal Chem 89:4085–4090. https://doi.org/10.1021/acs.analchem.6b04958

    Article  CAS  PubMed  Google Scholar 

  170. Han Z, Chen L, Weng Q et al (2018) Silica-coated gold nanorod@CdSeTe ternary quantum dots core/shell structure for fluorescence detection and dual-modal imaging. Sensors Actuators B Chem 258:508–516. https://doi.org/10.1016/j.snb.2017.11.157

    Article  CAS  Google Scholar 

  171. Ye T, Peng Y, Yuan M et al (2019) A “turn-on” fluorometric assay for kanamycin detection by using silver nanoclusters and surface plasmon enhanced energy transfer. Microchim Acta 186(40). https://doi.org/10.1007/s00604-018-3161-3

  172. Léger C, Di Meo T, Aumont-Nicaise M et al (2019) Ligand-induced conformational switch in an artificial bidomain protein scaffold. Sci Rep 9(1178). https://doi.org/10.1038/s41598-018-37256-5

  173. Wu Y-T, Qiu X, Lindbo S et al (2018) Quantum Dot-Based FRET Immunoassay for HER2 Using Ultrasmall Affinity Proteins. Small 14:1802266. https://doi.org/10.1002/smll.201802266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meral Yüce.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pehlivan, Z.S., Torabfam, M., Kurt, H. et al. Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019). Microchim Acta 186, 563 (2019). https://doi.org/10.1007/s00604-019-3659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3659-3

Keywords

Navigation