Skip to main content
Log in

An on-site bacterial detection strategy based on broad-spectrum antibacterial ε-polylysine functionalized magnetic nanoparticles combined with a portable fluorometer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive on-site bacterial detection strategy is presented that integrates the broad-spectrum capturing feature of ε-polylysine-functionalized magnetic nanoparticles with an in-house built portable fluorometer. Based on the electrostatic interaction, the functionalized magnetic nanoparticles (ε-PL-MNPs) were prepared for Gram-positive and Gram-negative bacterial separation and subsequent viable release. ε-PL-MNPs show a broad reactivity towards bacteria with the high capture efficiency from real-world sample media. They also enable controlled viable bacterial release with pH adjustment. Detection of bacteria is based on a combination of broad-spectrum capture with colorimetric and fluorimetric immunoassays. A portable fluorometer is built to enhance the applicability for sensitive on-site detection. A limit of detection of 98 CFU·mL−1 is achieved that is comparable to that of a known spectrofluorometric method for E. coli DH5α.

Schematic presentation of bacterial capture using cationic polymer functionalized magnetic nanoparticles and general fluorometric immunoassay with portable fluorometer. The limit of detection is 98 CFU·mL−1 for E. coli DH5α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J (2015) Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev 89:105–120

    Article  CAS  Google Scholar 

  2. Deisingh AK, Thompson M (2004) Strategies for the detection of Escherichia coli O157:H7 in foods. J Appl Microbiol 96:419–429

    Article  CAS  Google Scholar 

  3. Law JW, Ab Mutalib NS, Chan KG, Lee LH (2014) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770–789

    PubMed  Google Scholar 

  4. Li YQ, Zhu BW, Li YG, Leow WR, Goh R, Ma B, Fong E, Tang M, Chen XD (2014) A Synergistic Capture Strategy for Enhanced Detection and Elimination of Bacteria. Angew Chem Int Ed 53:5837–5841

    Article  CAS  Google Scholar 

  5. Batt CA (2007) Materials science - Food pathogen detection. Science 316:1579–1580

    Article  CAS  Google Scholar 

  6. Gao XL, Shao MF, Xu YS, Luo Y, Zhang K, Ouyang F, Li J (2016) Non-selective Separation of Bacterial Cells with Magnetic Nanoparticles Facilitated by Varying Surface Charge. Front Microbiol 7:1–10

    Google Scholar 

  7. Luo K, Jeong KB, You SM, Lee DH, Jung JY, Kim YR (2018) Surface-Engineered Starch Magnetic Microparticles for Highly Effective Separation of a Broad Range of Bacteria. ACS Sustain Chem Eng 6:13524–13531

    Article  CAS  Google Scholar 

  8. Gill AAS, Singh S, Thapliyal N, Karpoormath R (2019) Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review. Microchim Acta 186:114–132

    Article  Google Scholar 

  9. Perez-Anes A, Szarpak-Jankowska A, Jary D, Auzély-Velty R (2017) β-CD-Functionalized Microdevice for Rapid Capture and Release of Bacteria. ACS Appl Mater Interfaces 9:13928–13938

    Article  CAS  Google Scholar 

  10. Zhan WJ, Wei T, Cao LM, Hu CM, Qu YC, Yu Q, Chen H (2017) Supramolecular Platform with Switchable Multivalent Affinity: Photo-Reversible Capture and Release of Bacteria. ACS Appl Mater Interfaces 9:3505–3513

    Article  CAS  Google Scholar 

  11. von der Ehe C, Buś T, Weber C, Stumpf S, Bellstedt P, Hartlieb M, Schubert US, Gottschaldt M (2016) Glycopolymer-Functionalized Cryogels as Catch and Release Devices for the Pre-Enrichment of Pathogens. ACS Macro Lett 5:326–331

    Article  Google Scholar 

  12. Fang B, Jiang Y, Rotello VM, Nüsslein K, Santore MM (2014) Easy Come Easy Go: Surfaces Containing Immobilized Nanoparticles or Isolated Polycation Chains Facilitate Removal of Captured Staphylococcus aureus by Retarding Bacterial Bond Maturation. ACS Nano 8:1180–1190

    Article  CAS  Google Scholar 

  13. Zhan L, Wu WB, Li CM, Huang CZ (2017) Magnetic Bead-Based Sandwich Immunoassay for Viral Pathogen Detection by Employing Gold Nanoparticle as Carrier. J Anal Test 1:298–305

    Article  Google Scholar 

  14. Yang S, Ouyang H, Su X, Gao H, Kong W, Wang M, Shu Q, Fu Z (2016) Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers. Biosens Bioelectron 78:174–180

    Article  CAS  Google Scholar 

  15. Xu XM, Ma XY, Wang HT, Wang ZP (2018) Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Microchim Acta 185:325–332

    Article  Google Scholar 

  16. Niemirowicz K, Surel U, Wilczewska AZ, Mystkowska J, Piktel E, Gu X, Namiot Z, Akowska AKL, Savage PB, Bucki R (2015) Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J Nanobiotechnology 13:1–11

    Article  CAS  Google Scholar 

  17. Kearns H, Goodacre R, Jamieson LE, Graham D, Faulds K (2017) SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Anal Chem 89:12666–12673

    Article  CAS  Google Scholar 

  18. Zhang Q, Li L, Qiao Z, Lei C, Fu Y, Xie Q, Yao S, Li Y, Ying Y (2017) Electrochemical Conversion of Fe3O4 Magnetic Nanoparticles to Electroactive Prussian Blue Analogues for Self-Sacrificial Label Biosensing of Avian Influenza Virus H5N1. Anal Chem 89:12145–12151

    Article  CAS  Google Scholar 

  19. Zhao Q, Li JT, Zhang XQ, Li ZP, Tang YL (2016) Cationic Oligo(thiophene ethynylene) with Broad-Spectrum and High Antibacterial Efficiency under White Light and Specific Biocidal Activity against S. aureus in Dark. ACS Appl Mater Interfaces 8:1019–1024

    Article  CAS  Google Scholar 

  20. Dam TK, Roy R, Das SK, Oscarson S, Brewer CF (2000) Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin - Thermodynamic analysis of the "multivalency effect". J Biol Chem 275:14223–14230

    Article  CAS  Google Scholar 

  21. Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoçi A, Wang J (2012) Bacterial Isolation by Lectin-Modified Microengines. Nano Lett 12:396–401

    Article  CAS  Google Scholar 

  22. Spellberg B, Bartlett JG, Gilbert DN (2013) The Future of Antibiotics and Resistance. New Engl J Med 368:299–302

    Article  CAS  Google Scholar 

  23. Huang Y-F, Wang Y-F, Yan X-P (2010) Amine-Functionalized Magnetic Nanoparticles for Rapid Capture and Removal of Bacterial Pathogens. Environ Sci Technol 44:7908–7913

    Article  CAS  Google Scholar 

  24. Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3–31

    Article  CAS  Google Scholar 

  25. Ge S, Agbakpe M, Wu Z, Kuang L, Zhang W, Wang X (2015) Influences of Surface Coating, UV Irradiation and Magnetic Field on the Algae Removal Using Magnetite Nanoparticles. Environ Sci Technol 49:1190–1196

    Article  CAS  Google Scholar 

  26. Reddy PM, Chang K-C, Liu Z-J, Chen C-T, Ho Y-P (2014) Functionalized Magnetic Iron Oxide (Fe3O4) Nanoparticles for Capturing Gram-Positive and Gram-Negative Bacteria. J Biomed Nanotechnol 10:1429–1439

    Article  CAS  Google Scholar 

  27. Jin Y, Liu F, Shan C, Tong M, Hou Y (2014) Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res 50:124–134

    Article  CAS  Google Scholar 

  28. Thiramanas R, Laocharoensuk R (2016) Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria. Microchim Acta 183:389–396

    Article  CAS  Google Scholar 

  29. Shima S, Sakai H (1977) Polylysine produced by streptomyces. Agric Biol Chem 41:1807–1809

  30. Shima S, Matsuoka H, Iwamoto T, Sakai H (1984) ANTIMICROBIAL ACTION OF EPSILON-POLY-L-LYSINE. J Antibiot 37:1449–1455

    Article  CAS  Google Scholar 

  31. Yang Y, Zhang R, Zhou B, Song J, Su P, Yang Y (2017) High Activity and Convenient Ratio Control: DNA-Directed Coimmobilization of Multiple Enzymes on Multifunctionalized Magnetic Nanoparticles. ACS Appl Mater Interfaces 9:37254–37263

    Article  CAS  Google Scholar 

  32. Tsumuraya T, Sato T, Hirama M, Fujii I (2018) Highly Sensitive and Practical Fluorescent Sandwich ELISA for Ciguatoxins. Anal Chem 90:7318–7324

    Article  CAS  Google Scholar 

  33. Zhao TT, Jiang ZW, Zhen SJ, Huang CZ, Li YF (2019) A copper(II)/cobalt(II) organic gel with enhanced peroxidase-like activity for fluorometric determination of hydrogen peroxide and glucose. Microchim Acta 186:168–175

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21535006 and 21475004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Li.

Ethics declarations

The author(s) declare that they have no competing interests. There is no ethical issue to declare in this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

The characterizations of TEM and zeta potentials of MNPs, ε-PL-MNP and PEI-MNPs. The effect of pH, incubation times and ionic strength on capture efficiency of ε-PL-MNP and PEI-MNPs. The culture results of capture efficiency of ε-PL-MNPs and PEI-MNPs at low concentrations. The optimization of colorimetric and fluorescent immunoassay conditions. The calibration plot between fluorescence intensity versus the concentration of Shigella flexneri and Staphylococcus aureus, respectively. General protocol with an unknown sample. An overview on recently reported nanomaterial-based methods for determination of bacteria.

ESM 1

(DOCX 1.61 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Lai, T., Jiang, J. et al. An on-site bacterial detection strategy based on broad-spectrum antibacterial ε-polylysine functionalized magnetic nanoparticles combined with a portable fluorometer. Microchim Acta 186, 526 (2019). https://doi.org/10.1007/s00604-019-3632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3632-1

Keywords

Navigation