Skip to main content
Log in

Ultrasensitive ciprofloxacin assay based on the use of a fluorescently labeled aptamer and a nanocomposite prepared from carbon nanotubes and MoSe2

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanocomposite was prepared from carbon nanotubes and MoSe2 (CNT-MoSe2). This nanomaterial quenches the fluorescence of fluorescein-labeled aptamers. When ciprofloxacin (CIP) binds to the aptamer, an aptamer/G-quadruplex complex will be formed and the interaction between labeled aptamer and CNT-MoSe2 nanostructures is weakened. This leads to significant fluorescence recovery. Under optimized experimental conditions, the limit of detection is 0.63 ng mL−1 with a good linearity in the range from 0.63 to 80 ng mL−1. The assay was applied to the determination of CIP in spiked milk, and the recoveries range between 94.3 and 97.0% (n = 3). Conceivably, the method is a generic approach that can be extended to the determination of other analyte for which adequate aptamers are available.

Schematic presentation of CNT-MoSe2 quenching based aptamer assay for the detection of ciprofloxacin. The assay exhibits good selectivity, stability and reproducibility, and low limit of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  2. Zhu ZG, Garcia-Gancedo L, Flewitt AJ, Xie HQ, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensor 12:5996–6022

    Article  Google Scholar 

  3. Wei G, Pan CJ, Reichert J, Jandt KD (2010) Controlled assembly of protein-protected gold nanoparticles on noncovalent functionalized carbon nanotubes. Carbon 48:645–653

    Article  CAS  Google Scholar 

  4. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    Article  CAS  Google Scholar 

  5. Zhu ZG, Garcia-Gancedo L, Chen C, Zhu XR, Xie HQ, Flewitt AJ, Milne WI (2013) Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate. Sensors Actuators B Chem 178:586–592

    Article  CAS  Google Scholar 

  6. Wang J, Kawde AN, Musameh M (2003) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128:912–916

    Article  CAS  Google Scholar 

  7. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 21:829–841

    Article  Google Scholar 

  8. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  9. Lv R, Robinson JA, Schaak RE, Sun D, Sun YF, Mallouk TE, Terrones M (2015) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc Chem Res 48:56–64

    Article  CAS  Google Scholar 

  10. Xu C, Peng SJ, Tan CL, Ang HX, Tan HT, Zhang H, Yan QY (2014) Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J Mater Chem A 2:5597–5601

    Article  CAS  Google Scholar 

  11. Zhang ZA, Fu Y, Yang X, Qu YH, Zhang ZY (2015) Hierarchical MoSe2 nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance. Chemnanomat 1(6):409–414

    Article  CAS  Google Scholar 

  12. Huang KJ, Zhang JZ, Fan Y (2015) Preparation of layered MoSe2 nanosheets on Ni-foam substrate with enhanced supercapacitor performance. Mater Lett 152:244–247

    Article  CAS  Google Scholar 

  13. Huang YP, Lu HY, Gu HH, Mo SY, Miao YE, Liu TX (2015) A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 7:18595–18602

    Article  CAS  Google Scholar 

  14. Yousaf M, Wang YS, Chen YJ, Wang ZP, Aftab W, Guo SJ, Han RPS (2018) Tunable free-standing core-shell CNT-MoSe2 anode for lithium storage. ACS Appl Mater Interfaces 10:14622–14631

    Article  CAS  Google Scholar 

  15. Song SP, Wang LH, Li J, Fan CH, Zhao JL (2008) Aptamer-based biosensors. TrAC-Trend Anal Chem 27:108–117

    Article  CAS  Google Scholar 

  16. Sharma A, Catanante G, Hayat A, Istamboulie G, Bhand S, Marty JL (2016) Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample. Talanta 158:35–41

    Article  CAS  Google Scholar 

  17. Boul PJ, Cho DG, Marquez M, Ou Z, Kadish KM, Guldi DM, Sessler JL (2007) Sapphyrin-nanotube assemblies. J Am Chem Soc 129:5683–5687

    Article  CAS  Google Scholar 

  18. Goud KY, Hayat A, Satyanarayana M, Kumar VS, Catanante G, Gobi KV, Marty JL (2017) Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher. Microchim Acta 184:4401–4408

    Article  Google Scholar 

  19. Liao QG, Wei BH, Luo LG (2017) Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes. Microchim Acta 184:627–632

    Article  CAS  Google Scholar 

  20. Yang RH, Tang ZW, Yan JL, Kang HZ, Zhu Z, Tan WH (2008) Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal Chem 80:7408–7413

    Article  CAS  Google Scholar 

  21. Zhang LB, Wei H, Li J, Li D, Li YH, Wang E (2010) A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay. Biosens Bioelectron 25:1897–1901

    Article  CAS  Google Scholar 

  22. Ionescu RE, Renault NJ, Bouffier L, Gondran C, Marco MP, Baeza FJS, Healy T, Martelet C (2007) Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. Biosens Bioelectron 23:549–555

    Article  CAS  Google Scholar 

  23. Zhang R, Wang Y, Yu LP (2014) Specific and ultrasensitive ciprofloxacin detection by responsive photonic crystal sensor. J Hazard Mater 280:46–54

    Article  CAS  Google Scholar 

  24. Reinemann C, Fritsch UF, Rudolph S, Strehlitz B (2016) Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens Bioelectron 77:1039–1047

    Article  CAS  Google Scholar 

  25. Hu XB, Goud KY, Kumar VS, Catanante G, Li ZH, Zhu ZG, Marty JL (2018) Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin. Sensors Actuators B Chem 268:278–286

    Article  CAS  Google Scholar 

  26. Chen ZG, Qian SH, Chen JH, Cai J, Wu SY, Cai ZP (2012) Protein-templated gold nanoclusters based sensor for off-on detection of ciprofloxacin with a high selectivity. Talanta 94:240–245

    Article  CAS  Google Scholar 

  27. Li D, Yan ZY, Cheng WQ (2008) Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe. Spectrochim Acta A 71:1204–1211

    Article  Google Scholar 

  28. Tang YW, Liu H, Gao JW, Liu XY, Gao X, Lu XN, Wang JP, Li JR (2018) Upconversion particle@Fe2O4@molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones. Talanta 181:95–103

    Article  CAS  Google Scholar 

  29. Wang SS, Wang YY, Yang KC, Zhong Y, Yang XM, Chen ZB (2017) Synthesis of carbon dots originated from hydroxypropylmethyl cellulose for sensing ciprofloxacin. Anal Sci 33:1129–1134

    Article  CAS  Google Scholar 

  30. Madrakian T, Maleki S, Afkhami A (2017) Surface decoration of cadmium-sulfide quantum dots with 3-mercaptopropionic acid as a fluorescence probe for determination of ciprofloxacin in real samples. Sensors Actuators B Chem 243:14–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61471233, 51590902). Gaoyuan Discipline of Shanghai-Environmental Science and Engineering (Resource Recycling Science and Engineering).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zhu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 755 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Wei, P., Catanante, G. et al. Ultrasensitive ciprofloxacin assay based on the use of a fluorescently labeled aptamer and a nanocomposite prepared from carbon nanotubes and MoSe2. Microchim Acta 186, 507 (2019). https://doi.org/10.1007/s00604-019-3629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3629-9

Keywords

Navigation