Advertisement

Microchimica Acta

, 186:476 | Cite as

Light-harvesting metal-organic framework nanoprobes for ratiometric fluorescence energy transfer-based determination of pH values and temperature

  • Zhaoyang Ding
  • Chunfei Wang
  • Shichao Wang
  • Li Wu
  • Xuanjun ZhangEmail author
Original Paper
  • 127 Downloads

Abstract

Light-harvesting nanoprobes were developed by self-assembly of nanoscale metal-organic frameworks (NMOFs) and stimuli-responsive polymers for fluorometric sensing of pH values and temperature. Two kinds of fluorescent NMOFs (acting as the energy donor) and stimuli-responsive polymers conjugated to fluorophores (acting as energy acceptors) were prepared and characterized. The NMOFs include zirconium(IV) and π-conjugated dicarboxylate ligands. The fluorophores inclued cyaine dyes and a Bodipy dye. The energy donor and energy acceptor form a Förster resonance energy transfer (FRET) nanosystem. In the light-harvesting system, the chain lengths of the stimuli-responsive polymers vary when the local pH value or temperature change. Ratiometric sensing of pH and temperature was accomplished by monitoring fluorescence. pH values were can be sensed between 3.0 and 8.0 under 420 nm excitation and by ratioing the emission peaks at 645 and 530 nm. Temperature can be sensed in the range from 25 to 50 °C under 550 nm excitation and by ratioing the emission peaks at 810 and 695 nm. The nanoprobes display excellent water dispersibility and cell membrane permeability. They were applied to image pH values and temperature in HeLa cells.

Graphical abstract

Schematic presentation of an effective strategy to fabricate light-harvesting nanoprobes by self-assembly of MOFs and stimuli-responsive polymers for ratiometric pH and temperature sensing. The distance as the polymer length between energy donor and acceptor is crucial for energy transfer efficiency.

Keywords

Light-harvesting MOF Ratiometric Energy transfer pH sensing Temperature sensing 

Notes

Acknowledgements

This work was supported by the Macao Science and Technology Development Fund under Grant No.: 052/2015/A2 and 082/2016/A2; the Research Grant of University of Macau under grant No.: MYRG2016-00058-FHS and MYRG2017-00066-FHS.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3608_MOESM1_ESM.docx (4.5 mb)
ESM 1 (DOCX 4637 kb)

References

  1. 1.
    Wang H-S (2017) Metal–organic frameworks for biosensing and bioimaging applications. Coord Chem Rev 349:139–155.  https://doi.org/10.1016/j.ccr.2017.08.015 CrossRefGoogle Scholar
  2. 2.
    Li JJ, Chen Y, Yu J, Cheng N, Liu Y (2017) A supramolecular artificial light-harvesting system with an ultrahigh antenna effect. Adv Mater 29(30).  https://doi.org/10.1002/adma.201701905 CrossRefGoogle Scholar
  3. 3.
    Lyu Y, Pu K (2017) Recent advances of Activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv Sci 4(6):1600481.  https://doi.org/10.1002/advs.201600481 CrossRefGoogle Scholar
  4. 4.
    Guo S, Song Y, He Y, Hu XY, Wang L (2018) Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly. Angew Chem Int Ed 57(12):3163–3167.  https://doi.org/10.1002/anie.201800175 CrossRefGoogle Scholar
  5. 5.
    Xu Z, Peng S, Wang YY, Zhang JK, Lazar AI, Guo DS (2016) Broad-Spectrum tunable Photoluminescent nanomaterials constructed from a modular light-harvesting platform based on macrocyclic Amphiphiles. Adv Mater 28(35):7666–7671.  https://doi.org/10.1002/adma.201601719 CrossRefPubMedGoogle Scholar
  6. 6.
    Chen L, Honsho Y, Seki S, Jiang D (2010) Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous Polyphenylene framework as antenna. J Am Chem Soc 132(19):6742–6748.  https://doi.org/10.1021/ja100327h CrossRefPubMedGoogle Scholar
  7. 7.
    Li J, Rao J, Pu K (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155:217–235.  https://doi.org/10.1016/j.biomaterials.2017.11.025 CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang X, Ballem MA, Hu ZJ, Bergman P, Uvdal K (2011) Nanoscale light-harvesting metal-organic frameworks. Angew Chem Int Ed 50(25):5729–5733.  https://doi.org/10.1002/anie.201007277 CrossRefGoogle Scholar
  9. 9.
    So MC, Wiederrecht GP, Mondloch JE, Hupp JT, Farha OK (2015) Metal-organic framework materials for light-harvesting and energy transfer. Chem Commun 51(17):3501–3510.  https://doi.org/10.1039/c4cc09596k CrossRefGoogle Scholar
  10. 10.
    Zhang X, Chen Z-K, Loh KP (2009) Coordination-assisted assembly of 1-D nanostructured light-harvesting antenna. J Am Chem Soc 131(21):7210–7211.  https://doi.org/10.1021/ja901041d CrossRefPubMedGoogle Scholar
  11. 11.
    Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44(10):957–968.  https://doi.org/10.1021/ar200028a CrossRefPubMedGoogle Scholar
  12. 12.
    Chen L, Furukawa K, Gao J, Nagai A, Nakamura T, Dong Y, Jiang D (2014) Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions. J Am Chem Soc 136(28):9806–9809.  https://doi.org/10.1021/ja502692w CrossRefPubMedGoogle Scholar
  13. 13.
    Liu Y, Jin J, Deng H, Li K, Zheng Y, Yu C, Zhou Y (2016) Protein-framed multi-porphyrin micelles for a hybrid natural-artificial light-harvesting Nanosystem. Angew Chem Int Ed 55(28):7952–7957.  https://doi.org/10.1002/anie.201601516 CrossRefGoogle Scholar
  14. 14.
    Duan X, Chan C, Guo N, Han W, Weichselbaum RR, Lin W (2016) Photodynamic therapy mediated by nontoxic Core-Shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and Antimetastatic effect on breast Cancer. J Am Chem Soc 138(51):16686–16695.  https://doi.org/10.1021/jacs.6b09538 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu R, Wang Y, Duan X, Lu K, Micheroni D, Hu A, Lin W (2016) Nanoscale metal-organic frameworks for Ratiometric oxygen sensing in live cells. J Am Chem Soc 138(7):2158–2161.  https://doi.org/10.1021/jacs.5b13458 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Poon C, Duan X, Chan C, Han W, Lin W (2016) Nanoscale coordination polymers Codeliver carboplatin and gemcitabine for highly effective treatment of platinum-resistant ovarian Cancer. Mol Pharm 13(11):3665–3675.  https://doi.org/10.1021/acs.molpharmaceut.6b00466 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    He C, Poon C, Chan C, Yamada SD, Lin W (2016) Nanoscale coordination polymers Codeliver chemotherapeutics and siRNAs to eradicate tumors of cisplatin-resistant ovarian Cancer. J Am Chem Soc 138(18):6010–6019.  https://doi.org/10.1021/jacs.6b02486 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, Lin W (2016) Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun 7:12499.  https://doi.org/10.1038/ncomms12499 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    He C, Liu D, Lin W (2015) Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem Rev 115(19):11079–11108.  https://doi.org/10.1021/acs.chemrev.5b00125 CrossRefPubMedGoogle Scholar
  20. 20.
    Huang J, He Y, Yao M-S, He J, Xu G, Zeller M, Xu Z (2017) A semiconducting gyroidal metal-sulfur framework for chemiresistive sensing. J Mater Chem A 5(31):16139–16143.  https://doi.org/10.1039/c7ta02069d CrossRefGoogle Scholar
  21. 21.
    Xu Z (2006) A selective review on the making of coordination networks with potential semiconductive properties. Coord Chem Rev 250(21–22):2745–2757.  https://doi.org/10.1016/j.ccr.2005.12.031 CrossRefGoogle Scholar
  22. 22.
    Zhang X, Wang W, Hu Z, Wang G, Uvdal K (2015) Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord Chem Rev 284:206–235.  https://doi.org/10.1016/j.ccr.2014.10.006 CrossRefGoogle Scholar
  23. 23.
    Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2012) Metal-organic frameworks in biomedicine. Chem Rev 112(2):1232–1268.  https://doi.org/10.1021/cr200256v CrossRefPubMedGoogle Scholar
  24. 24.
    Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38(5):1477–1504.  https://doi.org/10.1039/b802426j CrossRefPubMedGoogle Scholar
  25. 25.
    Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2011) Metal–organic framework materials as chemical sensors. Chem Rev 112(2):1105–1125.  https://doi.org/10.1021/cr200324t CrossRefGoogle Scholar
  26. 26.
    van der Meer BW (2014) Forster theory. In: Medintz I, Hildebrandt N (eds) FRET—Forster resonance energy transfer: from theory to applications. 1st ed. Wiley-VCH Verlag GmbH & co. KGaA, pp 23–62Google Scholar
  27. 27.
    Ding Z, Wang C, Feng G, Zhang X (2018) Thermo-responsive fluorescent polymers with diverse LCSTs for Ratiometric temperature sensing through FRET. Polymers 10(3):283–293.  https://doi.org/10.3390/polym10030283 CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Thomas AP, Palanikumar L, Jeena MT, Kim K, Ryu J-H (2017) Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye. Chem Sci 8(12):8351–8356.  https://doi.org/10.1039/c7sc03169f CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ding Z, Cao X (2013) Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand. BMC Biotechnol 13(1):109.  https://doi.org/10.1186/1472-6750-13-109
  30. 30.
    Ding Z, Kang L, Liu J, Zhang X, Cao X (2017) Preparation of pH-responsive metal chelate affinity polymer for adsorption and desorption of insulin. J Chem Technol Biotechnol 92(7):1590–1595.  https://doi.org/10.1002/jctb.5148 CrossRefGoogle Scholar
  31. 31.
    Li S, Chen J, Zhang X, Ding Z, Cao X (2018) Preparation and characterization of a pH-responsive polymer that interacts with microbial transglutaminase during affinity precipitation. Biotechnol Bioprocess Eng 23(1):31–38.  https://doi.org/10.1007/s12257-017-0366-y CrossRefGoogle Scholar
  32. 32.
    Li W, Gao F, Wang X, Zhang N, Ma M (2016) Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew Chem 128(32):9342–9347.  https://doi.org/10.1002/anie.201603417 CrossRefGoogle Scholar
  33. 33.
    Cohen SM (2017) The Postsynthetic renaissance in porous solids. J Am Chem Soc 139(8):2855–2863.  https://doi.org/10.1021/jacs.6b11259 CrossRefPubMedGoogle Scholar
  34. 34.
    Ding Z, Tan J, Feng G, Yuan Z, Wu C, Zhang X (2017) Nanoscale metal–organic frameworks coated with poly(vinyl alcohol) for ratiometric peroxynitrite sensing through FRET. Chem Sci 8(7):5101–5106.  https://doi.org/10.1039/c7sc01077j CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ding Z, Wang C, Feng G, Zhang X (2018) Energy-transfer metal–organic Nanoprobe for Ratiometric sensing with dual response to Peroxynitrite and hypochlorite. ACS Omega 3(8):9400–9406.  https://doi.org/10.1021/acsomega.8b01489 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cancer Centre and Bioimaging Core, Faculty of Health SciencesUniversity of MacauMacauChina
  2. 2.Department of ChemistryUniversity of WashingtonSeattleUSA
  3. 3.School of Public HealthNantong UniversityNantongChina

Personalised recommendations