Skip to main content
Log in

Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A non-enzymatic hydrogen peroxide (H2O2) electrochemical sensor material was prepared from silver nanoparticles and a 2D copper-porphyrin framework (MOF). The structure and morphology of the nanocomposite were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results showed that the MOF has a two-dimensional sheet structure, and a large number of Ag NPs are uniformly attached to it. The MOF also acts as a peroxidase mimic. The sensor has excellent catalytic performance in terms of H2O2 reduction. Figures of merit include (a) an electrochemical sensitivity of 21.6 μA mM−1 cm−2 at a typical working potential of −0.25 V (vs. SCE), (b) a detection limit of 1.2 μM (at S/N = 3), and (c) a linear response range that extends from 3.7 μM to 5.8 mM. Compared to other sensors of the same type, the linear range of the sensor is extended by an order of magnitude.

Silver nanoparticles (Ag NPs) were reduced with sodium borohydride (NaBH4) on the surface of copper(II)-porphyrin (Cu-TCPP) nanosheets prepared with the assistance of polyvinylpyrrolidone (PVP). Their synergistic effect improved the performance of H2O2 sensor fabricated by immobilizing Ag NPs/Cu-TCPP nanocomposites on glassy carbon electrodes (GCE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  CAS  Google Scholar 

  2. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  CAS  Google Scholar 

  3. Bai WS, Nie F, Zheng JB, Sheng QL (2014) Novel silver nanoparticle–manganese oxyhydroxide–graphene oxide nanocomposite prepared by modified silver mirror reaction and its application for electrochemical sensing. ACS Appl Mater Interfaces 6:5439–5449

    Article  CAS  Google Scholar 

  4. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés i Xamena FX, Gascon J (2015) Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14:48–55

    Article  CAS  Google Scholar 

  5. Zhang M, Feng GX, Song ZG, Zhou YP, Chao HY, Yuan D, Tan TTY, Guo Z, Hu Z, Tang BZ, Liu B, Zhao D (2014) Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J Am Chem Soc 136:7241–7244

    Article  CAS  Google Scholar 

  6. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  7. Yan W, Zhang CL, Chen SG, Han LJ, Zheng HG (2017) Two lanthanide metal–organic frameworks as remarkably selective and sensitive bifunctional luminescence sensor for metal ions and small organic molecules. ACS Appl Mater Interfaces 9:1629–1634

    Article  CAS  Google Scholar 

  8. Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC (2015) Two-dimensional metal–organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc 137:118–121

    Article  CAS  Google Scholar 

  9. Gallego A, Hermosa C, Castillo OI et al (2013) Solvent-induced delamination of a multifunctional two dimensional coordination polymer. Adv Mater 25:2141–2146

    Article  CAS  Google Scholar 

  10. Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H (2010) Surface nano-architecture of a metal–organic framework. Nat Mater 9:565–571

    Article  CAS  Google Scholar 

  11. Wang YX, Zhao MT, Ping JF, Chen B, Cao X, Huang Y, Tan C, Ma Q, Wu S, Yu Y, Lu Q, Chen J, Zhao W, Ying Y, Zhang H (2016) Bioinspired Design of Ultrathin 2D bimetallic metal–organic-framework Nanosheets used as biomimetic enzymes. Adv Mater 28:4149–4155

    Article  CAS  Google Scholar 

  12. Huang Y, Zhao MT, Han SK, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, Zhang Z, Li B, Chen B, Zong Y, Zhang H (2017) Growth of au nanoparticles on 2D Metalloporphyrinic metal-organic framework Nanosheets used as biomimetic catalysts for Cascade reactions. Adv Mater 29:1700102

    Article  Google Scholar 

  13. Bai WS, Li SJ, Ma JP, Cao W, Zheng JB (2019) Ultrathin 2D metal–organic framework (nanosheets and nanofilms)-based xD–2D hybrid nanostructures as biomimetic enzymes and supercapacitors. J Mater Chem A 7:9086–9098

    Article  CAS  Google Scholar 

  14. Qiu QM, Chen HY, Ying SN et al (2019) Wang YX, Ying YB (2019) simultaneous fluorometric determination of the DNAs of salmonella enterica, listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type cu-TCPP). Microchim Acta 186:93

    Article  Google Scholar 

  15. Lee DT, Jamir JD, Peterson GW, Parsons GN (2019) Water-stable chemical-protective textiles via euhedral surface-oriented 2D cu–TCPP metal-organic frameworks. Small 15:1805133

    Article  Google Scholar 

  16. Jiang FX, Yue RR, Du YK, Xu JK, Yang K (2013) A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosens Bioelectron 44:127–131

    Article  CAS  Google Scholar 

  17. Li Z, Zheng XH, Zheng JB (2016) A non–enzymatic sensor based on au@ag nanoparticles with good stability for sensitive detection of H2O2. New J Chem 40:2115–2120

    Article  CAS  Google Scholar 

  18. Bai WS, Nie F, Zheng JB, Sheng QL (2014) Novel silver nanoparticle−manganese Oxyhydroxide−graphene oxide nanocomposite prepared by modified silver Mirror reaction and its application for electrochemical sensing. ACS Appl Mater Interfaces 6:5439–5449

    Article  CAS  Google Scholar 

  19. Hernández–Gordillo A, Arroyo M, Zanella R, Rodríguez–González V (2014) Photoconversion of 4-nitrophenol in the presence of hydrazine with AgNPs-TiO2 nanoparticles prepared by the sol–gel method. J Hazard Mater 268:84–91

    Article  Google Scholar 

  20. Nia PM, Lorestani F, Meng WP, Alias Y (2015) A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites. Appl Surf Sci 332:648–656

    Article  Google Scholar 

  21. Xu G, Yamada T, Otsubo K, Sakaida S, Kitagawa H (2012) Facile “modular assembly” for fast construction of a highly oriented crystalline MOF Nanofilm. J Am Chem Soc 134:16524–16527

    Article  CAS  Google Scholar 

  22. Cherian S, Wamser CC (2000) Adsorption and Photoactivity of tetra(4-carboxyphenyl) porphyrin (TCPP) on Nanoparticulate TiO2. J Phys Chem B 104:3624–3629

    Article  CAS  Google Scholar 

  23. Kobayashi T, Kurokawa F, Uyeda N, Suito E (1970) The metal-ligand vibrations in the infrared spectra of various metal phthalocyanines. Spectrochim Acta A: Mol Spectrosc 26:1305–1311

    Article  CAS  Google Scholar 

  24. Rahimi R, Shariatinia S, Zargari S, Yaghoubi Berijani M, Ghaffarinejad A, Shojaie ZS (2015) Synthesis, characterization, and photocurrent generation of a new nanocomposite based cu–TCPP MOF and ZnO nanorod. RSC Adv 5:46624–46631

    Article  CAS  Google Scholar 

  25. Chen D, Wang G, Lu W, Zhang H, Li JH (2007) Photoelectrochemical study of organic–inorganic hybrid thin films via electrostatic layer–by–layer assembly. Electrochem Commun 9:2151–2156

    Article  CAS  Google Scholar 

  26. Han Y, Zheng JB, Dong SY (2013) A novel nonenzymatic hydrogen peroxide sensor based on ag–MnO2–MWCNTs nanocomposites. Electrochim Acta 90:35–43

    Article  CAS  Google Scholar 

  27. Ramezani H, Azizi SN, Hosseini SR (2017) NaY zeolite as a platform for preparation of ag nanoparticles arrays in order to construction of H2O2 sensor. Sensors Actuators B 248:571–579

    Article  CAS  Google Scholar 

  28. Bui MPN, Pham XH, Han KN, Li CA, Kim YS, Seong GH (2010) Electrocatalytic reduction of hydrogen peroxide by silver particles patterned on single-walled carbon nanotubes. Sensors Actuators B 150:436–441

    Article  CAS  Google Scholar 

  29. Li QZ, Qin XY, Luo YL, Lu W, Chang G, Asiri AM, al-Youbi AO, Sun X (2012) One-pot synthesis of ag nanoparticles/reduced graphene oxide nanocomposites and their application for nonenzymatic H2O2 detection. Electrochim Acta 83:283–287

    Article  CAS  Google Scholar 

  30. Golsheikh AM, Huang NM, Lim HN et al (2013) One-step electrodeposition synthesis of silver-nanoparticle-decorated grapheme on indium-tin-oxide for enzymeless hydrogen peroxide detection. CARBON 62:405–412

    Article  Google Scholar 

  31. Tian JQ, Li HL, Lu WB, Luo YL, Wang L, Sun XP (2011) Preparation of ag nanoparticle-decorated poly(m-phenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst 136:1806–1809

    Article  CAS  Google Scholar 

  32. Liu S, Tian JQ, Wang L, Li HL, Zhang YW, Sun XP (2010) Stable aqueous dispersion of graphene Nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with ag nanoparticles for Enzymeless hydrogen peroxide detection. Macromolecules 43:10078–10083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this project by the National Science Foundation of China (No. 21575113), the Natural Science Foundation of Shaanxi Province in China (No. 2017JM2036, 2018JQ2029), and the Fostering Foundation of Northwest University for the Excellent Ph.D. Dissertation (No. YYB17012), and Northwest University Graduate Innovation and Creativity Funds (No.YZZ17125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Zheng.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Bai, W. & Zheng, J. Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets. Microchim Acta 186, 482 (2019). https://doi.org/10.1007/s00604-019-3551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3551-1

Keywords

Navigation