Skip to main content

Advertisement

Log in

Amplified fluorescence imaging of HER2 dimerization on cancer cells by using a co-localization triggered DNA nanoassembly

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Convenient and sensitive detection of human epidermal growth factor receptor 2 (HER2) dimerization is highly desirable for molecule subtyping and guiding personalized HER2 targeted therapy of breast cancer. A colocalization-triggered DNA nanoassembly (CtDNA) strategy was developed for amplified imaging of HER2 dimerization. It exploits (a) the advantage of the specificity of aptamer proximity hybridization, and (b) the high sensitivity of hairpin-free nonlinear HCR. The mechanism of step-by-step hairpin-free nonlinear HCR for DNA dendritic nanoassembly was studied by native polyacrylamide gel electrophoresis, atomic force microscopy and fluorometry. The results revealed a high specificity, sensitivity, and excellent controllability of the DNA dendritic nanoassembly. The method was used to identify HER2 homodimers and HER2/HER3 heterodimers in various breast cancer cell lines using fluorescence microscopy. It was then extended to image and quantitatively evaluate HER2 homodimers in clinical formalin-fixed paraffin-embedded breast cancer tissue specimens. This revealed its remarkable accuracy and practicality for clinical diagnostics.

Schematic presentation of amplified imaging of human epidermal growth factor receptor 2 (HER2) dimerization on cancer cell surfaces by using a co-localization triggered DNA nanoassembly (CtDNA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bondza S, Bjorkelund H, Nestor M, Andersson K, Buijs J (2017) Novel real-time proximity assay for characterizing multiple receptor interactions on living cells. Anal Chem 89(24):13212–13218. https://doi.org/10.1021/acs.analchem.7b02983

    Article  CAS  PubMed  Google Scholar 

  2. Marianayagam NJ, Sunde M, Matthews JM (2004) The power of two: protein dimerization in biology. Trends Biochem Sci 29(11):618–625. https://doi.org/10.1016/j.tibs.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  3. Heldin CH (1995) Dimerization of cell surface receptors in signal transduction. Cell 80(2):213–223. https://doi.org/10.1016/0092-8674(95)90404-2

    Article  CAS  PubMed  Google Scholar 

  4. Geng L, Wang Z, Jia X, Han Q, Xiang Z, Li D, Yang X, Zhang D, Bu X, Wang W, Hu Z, Fang Q (2016) HER2 targeting peptides screening and applications in tumor imaging and drug delivery. Theranostics 6(8):1261–1273. https://doi.org/10.7150/thno.14302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 146(3):264–275. https://doi.org/10.1016/j.jconrel.2010.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamaguchi H, Chang SS, Hsu JL, Hung MC (2014) Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene 33(9):1073–1081. https://doi.org/10.1038/onc.2013.74

    Article  CAS  PubMed  Google Scholar 

  7. Pohlmann PR, Mayer IA, Mernaugh R (2009) Resistance to Trastuzumab in breast Cancer. Clin Cancer Res 15(24):7479–7491. https://doi.org/10.1158/1078-0432.ccr-09-0636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshioka Y, Suzuki T, Matsuo Y, Tsurita G, Watanabe T, Dohmae N, Nakamura Y, Hamamoto R (2017) Protein lysine methyltransferase SMYD3 is involved in tumorigenesis through regulation of HER2 homodimerization. Cancer med 6(7):1665–1672. https://doi.org/10.1002/cam4.1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Citri A, Skaria KB, Yarden Y (2003) The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 284(1):54–65. https://doi.org/10.1016/s0014-4827(02)00101-5

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, Gonzalez-Angulo AM, Mills GB, Penuel E, Winslow J, Sperinde J, Dua R, Pidaparthi S, Mukherjee A, Leitzel K, Kostler WJ, Lipton A, Bates M, Arteaga CL (2011) Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res 71(5):1871–1882. https://doi.org/10.1158/0008-5472.can-10-1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dey N, Williams C, Leyland-Jones B, De P (2015) A critical role for HER3 in HER2-amplified and non-amplified breast cancers: function of a kinase-dead RTK. Am J Transl Res 7(4):733–750

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Spears M, Taylor KJ, Munro AF, Cunningham CA, Mallon EA, Twelves CJ, Cameron DA, Thomas J, Bartlett JM (2012) In situ detection of HER2:HER2 and HER2:HER3 protein-protein interactions demonstrates prognostic significance in early breast cancer. Breast Cancer Res Treat 132(2):463–470. https://doi.org/10.1007/s10549-011-1606-z

    Article  CAS  PubMed  Google Scholar 

  13. Koos B, Andersson L, Clausson CM, Grannas K, Klaesson A, Cane G, Soderberg O (2014) Analysis of protein interactions in situ by proximity ligation assays. Curr Top Microbiol Immunol 377:111–126. https://doi.org/10.1007/82_2013_334

    Article  CAS  PubMed  Google Scholar 

  14. Avin A, Levy M, Porat Z, Abramson J (2017) Quantitative analysis of protein-protein interactions and post-translational modifications in rare immune populations. Nat Commun 8(1):1524. https://doi.org/10.1038/s41467-017-01808-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang H, Chen S, Li P, Wang L, Li J, Li J, Yang H-H, Tan W (2018) Nongenetic approach for imaging protein dimerization by aptamer recognition and proximity-induced DNA assembly. J Am Chem Soc 140(12):4186–4190. https://doi.org/10.1021/jacs.7b11311

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Li W, Sun J, Zhang S-Y, Yang S, Li J, Li J, Yang H-H (2018) Imaging of receptor dimers in zebrafish and living cells via aptamer recognition and proximity-induced hybridization chain reaction. Anal Chem 90(24):14433–14438. https://doi.org/10.1021/acs.analchem.8b04015

    Article  CAS  PubMed  Google Scholar 

  17. Ang YS, Li JJ, Chua PJ, Ng CT, Bay BH, Yung LL (2018) Localized visualization and autonomous detection of cell surface receptor clusters using DNA proximity circuit. Anal Chem 90(10):6193–6198. https://doi.org/10.1021/acs.analchem.8b00722

    Article  CAS  PubMed  Google Scholar 

  18. Hagemann IS (2016) Molecular testing in breast Cancer a guide to current practices. Arch Pathol Lab Med 140(8):815–824. https://doi.org/10.5858/arpa.2016-0051-RA

    Article  CAS  PubMed  Google Scholar 

  19. Meng H-M, Liu H, Kuai H, Peng R, Mo L, Zhang X-B (2016) Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 45(9):2583–2602. https://doi.org/10.1039/c5cs00645g

    Article  CAS  PubMed  Google Scholar 

  20. Hong F, Zhang F, Liu Y, Yan H (2017) DNA origami: scaffolds for creating higher order structures. Chem Rev 117(20):12584–12640. https://doi.org/10.1021/acs.chemrev.6b00825

    Article  CAS  PubMed  Google Scholar 

  21. Qu Y, Yang J, Zhan P, Liu S, Zhang K, Jiang Q, Li C, Ding B (2017) Self-assembled DNA dendrimer nanoparticle for efficient delivery of Immunostimulatory CpG motifs. ACS Appl Mater Inter 9(24):20324–20329. https://doi.org/10.1021/acsami.7b05890

    Article  CAS  Google Scholar 

  22. Xuan F, Fan TW, Hsing IM (2015) Electrochemical interrogation of kinetically-controlled dendritic DNA/PNA assembly for immobilization-free and enzyme-free nucleic acids sensing. ACS Nano 9(5):5027–5033. https://doi.org/10.1021/nn507282f

    Article  CAS  PubMed  Google Scholar 

  23. Chang CC, Chen CY, Chuang TL, Wu TH, Wei SC, Liao H, Lin CW (2016) Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosens Bioelectron 78:200–205. https://doi.org/10.1016/j.bios.2015.11.051

    Article  CAS  PubMed  Google Scholar 

  24. Yan Z, Hu S, Wang H, Yu K, Yan G, Liu X, Na L, Feng L (2017) DNA dendrimer–streptavidin Nanocomplex: an efficient signal amplifier for construction of biosensing platforms. Anal Chem 89(12):6907–6914. https://doi.org/10.1021/acs.analchem.7b01551

    Article  CAS  Google Scholar 

  25. Xuan F, Hsing IM (2014) Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J Am Chem Soc 136(28):9810–9813. https://doi.org/10.1021/ja502904s

    Article  CAS  PubMed  Google Scholar 

  26. Ding X, Cheng W, Li Y, Wu J, Li X, Cheng Q, Ding S (2017) An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosens Bioelectron 87:345–351. https://doi.org/10.1016/j.bios.2016.08.077

    Article  CAS  PubMed  Google Scholar 

  27. Chen CH, Chernis GA, Hoang VQ, Landgraf R (2003) Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc Natl Acad Sci U S A 100(16):9226–9231. https://doi.org/10.1073/pnas.1332660100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi Y, Huang W, Tan Y, Jin X, Dua R, Penuel E, Mukherjee A, Sperinde J, Pannu H, Chenna A, DeFazio-Eli L, Pidaparthi S, Badal Y, Wallweber G, Chen L, Williams S, Tahir H, Larson J, Goodman L, Whitcomb J, Petropoulos C, Winslow J (2009) A novel proximity assay for the detection of proteins and protein complexes: quantitation of HER1 and HER2 total protein expression and homodimerization in formalin-fixed, paraffin-embedded cell lines and breast cancer tissue. Diagn Mol Pathol 18(1):11–21. https://doi.org/10.1097/PDM.0b013e31818cbdb2

    Article  CAS  PubMed  Google Scholar 

  29. Garner AP, Bialucha CU, Sprague ER, Garrett JT, Sheng Q, Li S, Sineshchekova O, Saxena P, Sutton CR, Chen D, Chen Y, Wang H, Liang J, Das R, Mosher R, Gu J, Huang A, Haubst N, Zehetmeier C, Haberl M, Elis W, Kunz C, Heidt AB, Herlihy K, Murtie J, Schuller A, Arteaga CL, Sellers WR, Ettenberg SA (2013) An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Cancer Res 73(19):6024–6035. https://doi.org/10.1158/0008-5472.can-13-1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okita R, Mougiakakos D, Ando T, Mao Y, Sarhan D, Wennerberg E, Seliger B, Lundqvist A, Mimura K, Kiessling R (2012) HER2/HER3 signaling regulates NK cell-mediated cytotoxicity via MHC class I chain-related molecule a and B expression in human breast cancer cell lines. J Immunol 188(5):2136–2145. https://doi.org/10.4049/jimmunol.1102237

    Article  CAS  PubMed  Google Scholar 

  31. Teng Y, Pi W, Wang Y, Cowell JK (2016) WASF3 provides the conduit to facilitate invasion and metastasis in breast cancer cells through HER2/HER3 signaling. Oncogene 35(35):4633–4640. https://doi.org/10.1038/onc.2015.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M (2018) Human epidermal growth factor receptor 2 testing in breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch Pathol Lab Med 36(20):2105–2122. https://doi.org/10.1200/jco.2018.77.8738

    Article  CAS  Google Scholar 

  33. Huang W, Reinholz M, Weidler J, Yolanda L, Paquet A, Whitcomb J, Lingle W, Jenkins RB, Chen B, Larson JS, Tan Y, Sherwood T, Bates M, Perez EA (2010) Comparison of central HER2 testing with quantitative total HER2 expression and HER2 homodimer measurements using a novel proximity-based assay. Am J Clin Pathol 134(2):303–311. https://doi.org/10.1309/ajcp3bzy4yafntrg

    Article  CAS  PubMed  Google Scholar 

  34. Zhou W, Xu F, Li D, Chen Y (2018) Improved detection of HER2 by a quasi-targeted proteomics approach using aptamer-peptide probe and liquid chromatography-tandem mass spectrometry. Clin Chem 64(3):526–535. https://doi.org/10.1373/clinchem.2017.274266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (81572080, 81873972 and 81873980) and the Training Program for Advanced Young Medical Personnel of Chongqing (2017HBRC003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijia Ding or Wei Cheng.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.30 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Xu, L., Liu, S. et al. Amplified fluorescence imaging of HER2 dimerization on cancer cells by using a co-localization triggered DNA nanoassembly. Microchim Acta 186, 439 (2019). https://doi.org/10.1007/s00604-019-3549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3549-8

Keywords

Navigation