Skip to main content
Log in

A chitosan grafted mesoporous carbon aerogel for ultra-sensitive voltammetric determination of isoniazid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A screen-printed carbon electrode (SPCE) was modified with chitosan (Chit) supported on carbon aerogel (CA) to obtain an electrochemical sensor for the tuberculosis drug isoniazid (INZ). The interconnected mesoporous structure of Chit/CA provides a large surface area (SBET = 461 m2 g−1) and good porosity (VTot = 0.69 cm3 g−1). Besides, the modified SPCE displayed enhanced electrocatalytic activity due to the presence of numerous active sites (such as >C=O, -NH-, -NH2, -OH). Figures of merit include (a) a typical working voltage of 0.28 V (vs. Ag/AgCl), (b) high sensitivity (8.09 μA μM−1 cm−2), (c) a wide linear response to INZ (0.01–115 μM) and (d) a low detection limit (8 nM). The modified electrode has successfully been applied to the determination of INZ in spiked serum and urine, and recoveries ranged from 97.8 to 99.8%.

Schematic illustration of preparation and applications of a nanocomposite consisting of chitosan (Chit; CS) supported on carbon aerogel (CA) for electrochemical detection of isoniazid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4

Similar content being viewed by others

References

  1. Shahrokhian S, Ghalkhani M (2010) Glassy carbon electrodes modified with a film of nanodiamond–graphite/chitosan: application to the highly sensitive electrochemical determination of azathioprine. Electrochim Acta 55:3621–3627

    Article  CAS  Google Scholar 

  2. Becker C, Dressman JB, Amidon GL, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S, Barends DM, International Pharmaceutical Federation, Groupe BCS (2007) Biowaiver monographs for immediate release solid oral dosage forms: isoniazid. J Pharm Sci 96:522–531

    Article  CAS  Google Scholar 

  3. Yan X, Bo X, Guo L (2011) Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode. Sensors Actuators B Chem 155:837–842

    Article  CAS  Google Scholar 

  4. Calleri E, De Lorenzi E, Furlanetto S et al (2002) Validation of a RP-LC method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin in a pharmaceutical formulation. J Pharm Biomed Anal 29:1089–1096

    Article  CAS  Google Scholar 

  5. Khuhawar M, Rind F (2002) Liquid chromatographic determination of isoniazid, pyrazinamide and rifampicin from pharmaceutical preparations and blood. J Chromatogr B 766:357–363

    Article  CAS  Google Scholar 

  6. Goicoechea HC, Olivieri AC (1999) Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration. J Pharm Biomed Anal 20:681–686

    Article  CAS  Google Scholar 

  7. You T, Niu L, Gui JY, Dong S, Wang E (1999) Detection of hydrazine, methylhydrazine and isoniazid by capillary electrophoresis with a 4-pyridyl hydroquinone self-assembled microdisk platinum electrode. J Pharm Biomed Anal 19:231–237

    Article  CAS  Google Scholar 

  8. Lapa RA, Lima JL, Santos JL (2000) Fluorimetric determination of isoniazid by oxidation with cerium (IV) in a multicommutated flow system. Anal Chim Acta 419:17–23

    Article  CAS  Google Scholar 

  9. Safavi A, Karimi MA, Nezhad MRH (2003) Flow injection determination of isoniazid using N-bromosuccinimide-and N-chlorosuccinimide-luminol chemiluminescence systems. J Pharm Biomed Anal 30:1499–1506

    Article  CAS  Google Scholar 

  10. Demirkaya-Miloglu F, Oznuluer T, Ozdurak B et al (2016) Design and optimization of a new Voltammetric method for determination of isoniazid by using PEDOT modified gold electrode in Pharmaceuticls. Iranian J Pharm Res: IJPR 15:65

    Google Scholar 

  11. Cheemalapati S, Chen S-M, Ali MA, al-Hemaid FMA (2014) Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis. Colloids Surf B: Biointerfaces 121:444–450

    Article  CAS  Google Scholar 

  12. Jena BK, Raj CR (2010) Au nanoparticle decorated silicate network for the amperometric sensing of isoniazid. Talanta 80:1653–1656

    Article  CAS  Google Scholar 

  13. Szlósarczyk M, Piech R, Bator B et al (2012) Voltammetric determination of isoniazid using cyclic renewable mercury film silver based electrode. Pharm Anal Acta 3:1–5

    Google Scholar 

  14. Gowthaman N, Kesavan S, John SA (2016) Monitoring isoniazid level in human fluids in the presence of theophylline using gold@ platinum core@ shell nanoparticles modified glassy carbon electrode. Sensors Actuators B Chem 230:157–166

    Article  CAS  Google Scholar 

  15. Rastogi PK, Ganesan V, Azad UP (2016) Electrochemical determination of nanomolar levels of isoniazid in pharmaceutical formulation using silver nanoparticles decorated copolymer. Electrochim Acta 188:818–824

    Article  CAS  Google Scholar 

  16. Yang G, Wang C, Zhang R, Wang C, Qu Q, Hu X (2008) Poly (amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals. Bioelectrochemistry 73:37–42

    Article  CAS  Google Scholar 

  17. Satyanarayana M, Reddy KK, Gobi KV (2014) Multiwall carbon nanotube ensembled biopolymer electrode for selective determination of isoniazid in vitro. Anal Methods 6:3772–3778

    Article  CAS  Google Scholar 

  18. Guo Z, Wang Z-Y, Wang H-H, Huang GQ, Li MM (2015) Electrochemical sensor for isoniazid based on the glassy carbon electrode modified with reduced graphene oxide–au nanomaterials. Mater Sci Eng C 57:197–204

    Article  CAS  Google Scholar 

  19. Han D, Yan L, Chen W, Li W (2011) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym 83:653–658

    Article  CAS  Google Scholar 

  20. Shahrokhian S, Asadian E (2010) Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim Acta 55:666–672

    Article  CAS  Google Scholar 

  21. Shahrokhian S, Amiri M (2007) Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Microchim Acta 157:149–158

    Article  CAS  Google Scholar 

  22. Rajkumar C, Thirumalraj B, Chen S-M, Chen HA (2017) A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine. J Colloid Interface Sci 487:149–155

    Article  CAS  Google Scholar 

  23. An J, Bi Y-Y, Yang C-X, Hu FD, Wang CM (2013) Electrochemical study and application on rutin at chitosan/graphene films modified glassy carbon electrode. J Pharm Anal 3:102–108

    Article  CAS  Google Scholar 

  24. Chen C, Zhang Y, Zeng J, Zhang F, Zhou K, Bowen CR, Zhang D (2017) Aligned macroporous TiO2/chitosan/reduced graphene oxide (rGO) composites for photocatalytic applications. Appl Surf Sci 424:170–176

    Article  CAS  Google Scholar 

  25. Kim MK, Sundaram KS, Iyengar GA et al (2015) A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion. Chem Eng J 267:51–64

    Article  CAS  Google Scholar 

  26. Thirumalraj B, Rajkumar C, Chen S-M, Veerakumar P, Perumal P, Liu SB (2018) Carbon aerogel supported palladium-ruthenium nanoparticles for electrochemical sensing and catalytic reduction of food dye. Sensors Actuators B Chem 257:48–59

    Article  CAS  Google Scholar 

  27. Xu C, Hei Y, Liu J, Sun M, Sha T, Wang N, Hassan M, Bo X, Zhou M (2018) Synthesis of a threedimensional interconnected carbon nanorod aerogel from wax gourd for amperometric sensing. Microchimica Acta. S27 185(10):482

    Article  Google Scholar 

  28. Li R, Zhu H, Li Z, Liu J (2018) Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots. Microchim Acta 185:145

    Article  Google Scholar 

  29. Rajkumar C, Veerakumar P, Chen S-M, Thirumalraj B, Liu SB (2017) Facile and novel synthesis of palladium nanoparticles supported on a carbon aerogel for ultrasensitive electrochemical sensing of biomolecules. Nanoscale 9:6486–6496

    Article  CAS  Google Scholar 

  30. Balasubramanian P, Thirumalraj B, Chen S-M, Barathi PJJoTES (2017) Electrochemical determination of isoniazid using gallic acid supported reduced graphene oxide. J Electrochem Soc 164(7):H503–H508

    Article  CAS  Google Scholar 

  31. Almarzooqi FA, Al Ghaferi AA, Saadat I et al (2014) Application of capacitive deionisation in water desalination: a review. Desalination 342:3–15

    Article  CAS  Google Scholar 

  32. Hamedi M, Karabulut E, Marais A, Herland A, Nyström G, Wågberg L (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52:12038–12042

    Article  CAS  Google Scholar 

  33. Wei X, Wan S, Gao S (2016) Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors. Nano Energy 28:206–215

    Article  CAS  Google Scholar 

  34. Zhu X, Xu J, Duan X, Lu L, Zhang K, Yu Y, Xing H, Gao Y, Dong L, Sun H, Yang T (2015) Controlled synthesis of partially reduced graphene oxide: enhance electrochemical determination of isoniazid with high sensitivity and stability. J Electroanal Chem 757:183–191

    Article  CAS  Google Scholar 

  35. Majidi MR, Jouyban A, Asadpour-Zeynali KJJoEC (2006) Voltammetric behavior and determination of isoniazid in pharmaceuticals by using overoxidized polypyrrole glassy carbon modified electrode. J Electroanal Chem 589:32–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.S. acknowledge the support provided by the Academia Sinica research program on Nanoscience and Nanotechnology under project number NM004. RS acknowledges the support by the Development of Novel Thermoelectric Materials for Sustainable Energy Academia Sinica in Taiwan AS-SS-106-01-1. The authors are grateful for the financial support (MOST106-2113-M-027-003 and MOST106-2221-E-182-021) from the Ministry of Science and Technology (MOST), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shen-Ming Chen or Raman Sankar.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, C., Nehru, R., Chen, SM. et al. A chitosan grafted mesoporous carbon aerogel for ultra-sensitive voltammetric determination of isoniazid. Microchim Acta 186, 419 (2019). https://doi.org/10.1007/s00604-019-3533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3533-3

Keywords

Navigation