Skip to main content
Log in

A chemiluminescence resonance energy transfer strategy and its application for detection of platinum ions and cisplatin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel chemiluminescence resonance energy transfer (CRET) system was developed and combined with a structure-switching aptamer for the highly sensitive detection of platinum. Platinum was chosen as a model analyte to demonstrate the generality of the new CRET system. This aptameric platform consisted of a streptavidin labeled aptamer against platinum and a streptavidin-coated magnetic bead for the selective separation of platinum-bound aptamer. The platinum–aptamer probe contained several guanine (G) bases bound to the 3,4,5-trimethoxyphenyl-glyoxal (TMPG) donor group at the 5′ end, a fluorescent acceptor (6-carboxy-2′,4,7,7′-tetrachlorofluorescein, TET) at the 3′ end, and a streptavidin aptamer sequence in which several base pairs were replaced by the G-G mismatch to induce the platinum-oligonucleotide coordination. The chemiluminescence (CL) generated by TMPG/G bases is transferred to the acceptor (TET). In the presence of platinum, the platinum–aptamer probe was folded such that the G bases at the 5′ end and TET at the 3′ were in close proximity. The complex was separated using streptavidin-coated magnetic beads by the addition of TMPG to form the TMPG/G bases complex. The ultraweak CL from the TMPG/G bases was strongly enhanced by TET. This novel CRET-based method can be easily performed with high limit of detection (50 ng·mL−1) and selectivity over other metal ions. This technique provides a novel method for simple, fast, and convenient point-of-care diagnostics for monitoring proteins and metal ions.

Schematic presentation of chemiluminescence resonance energy transfer (CRET) detection of platinum(II) by Pt–base pair coordination to the aptamer. TMPG: 3,4,5-trimethoxyphenyl-glyoxal, fluorophore TET: 6-carboxy-2′,4,7,7′-tetrachlorofluorescein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huang XY, Li L, Qian HF, Dong CQ, Ren JC (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45(31):5140–5143

    Article  CAS  Google Scholar 

  2. Gong YJ, Zhang XB, Zhang CC, Luo AL, Fu T, Tan WH, Shen GL, Yu RQ (2012) Through bond energy transfer: a convenient and universal strategy toward efficient Ratiometric fluorescent probe for bioimaging applications. Anal Chem 84(24):10777–10784

    Article  CAS  Google Scholar 

  3. Noor MO, Krull UJ (2014) Camera-based Ratiometric fluorescence transduction of nucleic acid hybridization with Reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem 86(20):10331–10339

    Article  CAS  Google Scholar 

  4. Wang C, Ouyang J, Wang YY, Ye DK, Xia XH (2014) Sensitive assay of protease activity on a micro/Nanofluidics Preconcentrator fused with the fluorescence resonance energy transfer detection technique. Anal Chem 86(6):3216–3221

    Article  CAS  Google Scholar 

  5. Zhang SS, Yan YM, Bi S (2009) Design of Molecular Beacons as signaling probes for adenosine triphosphate detection in Cancer cells based on Chemiluminescence resonance energy transfer. Anal Chem 81(21):8695–8701

    Article  CAS  Google Scholar 

  6. Qin GX, Zhao SL, Huang Y, Jiang J, Ye FG (2012) Magnetic bead-sensing-platform-based Chemiluminescence resonance energy transfer and its immunoassay application. Anal Chem 84(6):2708–2712

    Article  CAS  Google Scholar 

  7. Chen H, Li HF, Lin JM (2012) Determination of Ammonia in water based on Chemiluminescence resonance energy transfer between Peroxymonocarbonate and branched NaYF4:Yb3+/Er3+ nanoparticles. Anal Chem 84(20):8871–8879

    Article  CAS  Google Scholar 

  8. Dong SC, Liu F, Lu C (2013) Organo-modified Hydrotalcite-quantum dot nanocomposites as a novel Chemiluminescence resonance energy transfer probe. Anal Chem 85(6):3363–3368

    Article  CAS  Google Scholar 

  9. You XY, Li YH, Li BP, Ma J (2016) Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin. Talanta 147:63–68

    Article  CAS  Google Scholar 

  10. Freeman R, Liu XQ, Willner I (2011) Chemiluminescent and Chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-Quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133(30):11597–11604

    Article  CAS  Google Scholar 

  11. Zhao SL, Huang Y, Shi M, Liu RJ, Liu YM (2010) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82(5):2036–2041

    Article  CAS  Google Scholar 

  12. Dong YP, Wang J, Peng Y, Zhu JJ (2017) A novel aptasensor for lysozyme based on electrogenerated chemiluminescence resonance energy transfer between luminol and silicon quantum dots. Biosens Bioelectron 94:530–535

    Article  CAS  Google Scholar 

  13. Farokhzad OC, Cheng JJ, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103(16):6315–6320

    Article  CAS  Google Scholar 

  14. Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132

    Article  CAS  Google Scholar 

  15. Farokhzad OC, Jon SY, Khademhosseini A, Tran TNT, LaVan DA, Langer R (2004) Nanopartide-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672

    Article  CAS  Google Scholar 

  16. Liu RJ, Wu H, Lv L, Kang XJ, Cui CB, Feng J, Guo ZJ (2018) Fluorometric aptamer based assay for ochratoxin a based on the use of exonuclease III. Microchim Acta 185(5):254

    Article  Google Scholar 

  17. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment - Rna ligands to bacteriophage-T4 DNA-polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  18. Hermann T, Patel DJ (2000) Biochemistry - adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825

    Article  CAS  Google Scholar 

  19. Al Rubaye A, Nabok A, Catanante G, Marty JL, Takacs E, Szekacs A (2018) Detection of ochratoxin a in aptamer assay using total internal reflection ellipsometry. Sensors Actuators B Chem 263:248–251

    Article  Google Scholar 

  20. Lin YN, Dai YX, Sun YL, Ding CF, Sun WY, Zhu XD, Liu H, Luo CN (2018) A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates. Talanta 182:116–124

    Article  CAS  Google Scholar 

  21. Zhou WZ, Huang PJJ, Ding JS, Liu J (2014) Aptamer-based biosensors for biomedical diagnostics. Analyst 139(11):2627–2640

    Article  CAS  Google Scholar 

  22. Wang YH, Bao L, Liu ZH, Pang DW (2011) Aptamer biosensor based on fluorescence resonance energy transfer from Upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83(21):8130–8137

    Article  CAS  Google Scholar 

  23. Yang SH, Zhang FF, Liang QL, Wang ZH (2018) A three-dimensional graphene-based ratiometric signal amplification aptasensor for MUC1 detection. Biosens Bioelectron 120:85–92

    Article  CAS  Google Scholar 

  24. Cho EJ, Lee JW, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264

    Article  CAS  Google Scholar 

  25. Weng X, Neethirajan S (2017) Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Microchim Acta 184(11):4545–4552

    Article  CAS  Google Scholar 

  26. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ, Urban N, Taniguchi T (2008) Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451(7182):1116–1120

    Article  CAS  Google Scholar 

  27. Wang YJ, Farrell N, Burgess JD (2001) Direct evidence for preassociation preceding covalent binding in the reaction of cis-[Pt(NH3)(2)(H2O)(2)](2+) with surface immobilized oligonucleotides. J Am Chem Soc 123(23):5576–5577

    Article  CAS  Google Scholar 

  28. Elmroth SKC, Lippard SJ (1995) Surface and electrostatic contributions to DNA-promoted reactions of platinum(ii) complexes with short oligonucleotides - a kinetic-study. Inorg Chem 34(21):5234–5243

    Article  CAS  Google Scholar 

  29. Fan DQ, Zhai QF, Zhou WJ, Zhu XQ, Wang EK, Dong SJ (2016) A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation. Biosens Bioelectron 85:771–776

    Article  CAS  Google Scholar 

  30. Sang FM, Liu J, Zhang X, Pan JX (2018) An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer. Microchim Acta 185(5):267

    Article  Google Scholar 

  31. Cai S, Tian XK, Sun LL, Hu HH, Zheng SR, Jiang HD, Yu LS, Zeng S (2015) Platinum(II)-oligonucleotide coordination based Aptasensor for simple and selective detection of platinum compounds. Anal Chem 87(20):10542–10546

    Article  CAS  Google Scholar 

  32. Bing T, Yang XJ, Mei HC, Cao ZH, Shangguan DH (2010) Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Biorg Med Chem 18(5):1798–1805

    Article  CAS  Google Scholar 

  33. Mei HC, Bing T, Qi C, Zhang N, Liu XJ, Chang TJ, Yan JL, Shangguan D (2013) Rational design of Hg2+ controlled streptavidin-binding aptamer. Chem Commun 49(2):164–166

    Article  CAS  Google Scholar 

  34. Kojima E, Kai M, Ohkura Y, Ohba Y (1993) Phenylglyoxal and glyoxal as fluorogenic reagents selective for N-terminal tryptophan-containing peptides. Anal Chim Acta 280(1):157–162

    Article  CAS  Google Scholar 

  35. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13):6264–6268

    Article  CAS  Google Scholar 

  36. Cai S, Cao ZJ, Lau CW, Lu JZ (2014) Label-free technology for the amplified detection of microRNA based on the allosteric hairpin DNA switch and hybridization chain reaction. Analyst 139(22):6022–6027

    Article  CAS  Google Scholar 

  37. Cho S, Park L, Chong R, Kim YT, Lee JH (2014) Rapid and simple G-quadruplex DNA aptasensor with guanine chemiluminescence detection. Biosens Bioelectron 52:310–316

    Article  CAS  Google Scholar 

  38. Wang X, Lau C, Kai M, Lu JZ (2013) Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences. Analyst 138(9):2691–2697

    Article  CAS  Google Scholar 

  39. Moreno-Gordaliza E, Giesen C, Lazaro A, Esteban-Fernandez D, Humanes B, Canas B, Panne U, Tejedor A, Jakubowski N, Gomez-Gomez MM (2011) Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies. Anal Chem 83(20):7933–7940

    Article  CAS  Google Scholar 

  40. Martincic A, Cemazar M, Sersa G, Kovac V, Milacic R, Scancar J (2013) A novel method for speciation of Pt in human serum incubated with cisplatin, oxaliplatin and carboplatin by conjoint liquid chromatography on monolithic disks with UV and ICP-MS detection. Talanta 116:141–148

    Article  CAS  Google Scholar 

  41. Asimellis G, Michos N, Fasaki I, Kompitsas M (2008) Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 63(11):1338–1343

    Article  Google Scholar 

  42. Hernandez-Santos D, Gonzalez-Garcia MB, Costa-Garcia A (2005) Effect of metals on silver electrodeposition - Application to the detection of cisplatin. Electrochim Acta 50(9):1895–1902

    Article  CAS  Google Scholar 

  43. Yang HL, Cui HL, Wang LG, Yan L, Qian Y, Zheng XE, Wei W, Zhao J (2014) A label-free G-quadruplex DNA-based fluorescence method for highly sensitive, direct detection of cisplatin. Sensors Actuators B Chem 202:714–720

    Article  CAS  Google Scholar 

  44. Ruttkay-Nedecky B, Skalickova S, Kremplova M, Nejdl L, Kudr J, Hynek D, Novotna M, Labuda J, Adam V, Kizek R (2015) Formation of G-quadruplex and its utilizing for an automated spectrometric detection of cisplatin. Int J Electrochem Sci 10(5):3973–3987

    CAS  Google Scholar 

  45. Materon EM, Wong A, Klein SI, Liu JW, Sotomayor MDPT (2015) Multi-walled carbon nanotubes modified screen-printed electrodes for cisplatin detection. Electrochim Acta 158:271–276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Zhejiang Provincial Natural Science Foundation of China (LY18H300003), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1C1B6001112), the National Natural Science Foundation of China (21405136, 81673399), the National Key Project of China (2017YFC0908600) and Scientific Research Fund of Zhejiang Provincial Education Department (Y201430444).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheulhee Jung or Su Zeng.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Zhou, Y., Ye, J. et al. A chemiluminescence resonance energy transfer strategy and its application for detection of platinum ions and cisplatin. Microchim Acta 186, 463 (2019). https://doi.org/10.1007/s00604-019-3509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3509-3

Keywords

Navigation