Skip to main content
Log in

An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An acetamiprid-binding aptamer (ABA), gold nanoparticles (AuNPs) and upconversion nanoparticles (UCNPs) are used in a colorimetric and fluorometric method for the ultrasensitive and selective detection of the pesticide acetamiprid. The ABA is first configured into a duplex with a complementary DNA covalently attached to AuNPs. The resulting dsDNA-functionalized AuNP probe is not stable in 0.15 M NaCl solution and aggregates. This causing the color to change from red to purple. In the presence of acetamiprid, the ABA undergoes a structural switch from a DNA duplex to an aptamer-acetamiprid complex and consequently dissociates from the AuNPs. The partially unhybridized AuNPs are stable against salt-induced aggregation and show red color. The ratio of absorbances at 524 nm (red) and 650 nm (purple blue) varies with the concentration of acetamiprid in the 0.025–10 μM concentration range. The colorimetric signal can be further amplified by introducing DNA-modified carboxylated UCNPs (silica-coated NaYF4:Yb,Er) which display red and green fluorescence under 980 nm excitation. An inner filter effect occurs between DNA-modified UCNPs and dsDNA-modified AuNPs. The fluorometric assay is based on the measurement of the ratio of red (654 nm) and green (540 nm) fluorescence and works in the 0.025 to 1 μM acetamiprid concentration range and has a 0.36 nM detection limit (at a signal-to-noise ratio of 3). Because of the specificity of the aptamer, the assay is high selective. It was successfully used to quantify acetamiprid in contaminated real samples.

Schematic presentation of an upconversion fluorescent assay for acetamiprid. It involves the principle of analyte-triggered structural switch of aptamers, salt-induced AuNP aggregation, and signal amplification from UCNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:1099–1105

    Article  CAS  Google Scholar 

  2. Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364

    Article  CAS  Google Scholar 

  3. Abdel-Ghany ME, Hussein LA, El Azab NE (2017) Multiresidue analysis of five neonicotinoid insecticides and their primary metabolite in cucumbers and soil using high-performance liquid chromatography with diode-array detection. J AOAC Int 100:176–188

    Article  CAS  Google Scholar 

  4. Song SM, Zhang CF, Chen ZJ, He FM, Wei J, Tan HH, Li XS (2018) Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC-MS/MS with anion exchanger-disposable pipette extraction. J Chromatogr A 1557:51–61

    Article  CAS  Google Scholar 

  5. Mateu-Sanchez M, Moreno M, Arrebola FJ, Vidal JLM (2003) Analysis of acetamiprid in vegetables using gas chromatography-tandem mass spectrometry. Anal Sci 19:701–704

    Article  CAS  Google Scholar 

  6. Xu X, Guo Y, Wang L, He K, Guo Y, Wang X, Gunasekaran S (2018) Hapten-grafted programmed probe as a corecognition element for a competitive immunosensor to detect acetamiprid residue in agricultural products. J Agric Food Chem 66:7815–7821

    Article  CAS  Google Scholar 

  7. Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26:1178–1194

    Article  Google Scholar 

  8. Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    Article  CAS  Google Scholar 

  9. He J, Liu Y, Fan M, Liu X (2011) Isolation and identification of the DNA aptamer target to acetamiprid. J Agric Food Chem 59:1582–1586

    Article  CAS  Google Scholar 

  10. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  11. Verdian A (2018) Apta-nanosensors for detection and quantitative determination of acetamiprid – a pesticide residue in food and environment. Talanta 176:456–464

    Article  CAS  Google Scholar 

  12. Shi H, Zhao G, Liu M, Fan L, Cao T (2013) Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. J Hazard Mater 260:754–761

    Article  CAS  Google Scholar 

  13. Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86:11937–11941

    Article  CAS  Google Scholar 

  14. Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18

    Article  CAS  Google Scholar 

  15. Guo J, Li Y, Wang L, Xu J, Huang Y, Luo Y, Shen F, Sun C, Meng R (2016) Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Anal Bioanal Chem 408:557–566

    Article  CAS  Google Scholar 

  16. Hu W, Chen Q, Li H, Ouyang Q, Zhao J (2016) Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, ho@SiO2 and au nanoparticles. Biosens Bioelectron 80:398–404

    Article  CAS  Google Scholar 

  17. Qi Y, Xiu F-R, Zheng M, Li B (2016) A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: sensitivity, selectivity and mechanism. Biosens Bioelectron 83:243–249

    Article  CAS  Google Scholar 

  18. Li F, Li J, Wang C, Zhang J, Li X-F, Le XC (2011) Competitive protection of aptamer-functionalized gold nanoparticles by controlling the DNA assembly. Anal Chem 83:6464–6467

    Article  CAS  Google Scholar 

  19. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  20. Abnous K, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Taghdisi SM (2017) Aptamer based fluorometric acetamiprid assay using three kinds of nanoparticles for powerful signal amplification. Microchim Acta 184:81–90

    Article  CAS  Google Scholar 

  21. Bahreyni A, Yazdian-Robati R, Ramezani M, Abnous K, Taghdisi SM (2018) Fluorometric aptasensing of the neonicotinoid insecticide acetamiprid by using multiple complementary strands and gold nanoparticles. Microchim Acta 185

  22. Sun N, Ding Y, Tao Z, You H, Hua X, Wang M (2018) Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation. Food Chem 257:289–294

    Article  CAS  Google Scholar 

  23. Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103

    Article  CAS  Google Scholar 

  24. Saleh SM, Ali R, Hirsch T, Wolfbeis OS (2011) Detection of biotin–avidin affinity binding by exploiting a self-referenced system composed of upconverting luminescent nanoparticles and gold nanoparticles. J Nanopart Res 13:4603–4611

    Article  CAS  Google Scholar 

  25. Achatz DE, Ali R, Wolfbeis OS (2011) Luminescent chemical sensing, biosensing, and screening using Upconverting nanoparticles. In: Prodi L, Montalti M, Zaccheroni N (eds) Luminescence applied in sensor science. Springer Berlin Heidelberg, Berlin, pp 29–50

    Google Scholar 

  26. Wu S, Liu L, Duan N, Wang W, Yu Q, Wang Z (2018) A test strip for ochratoxin a based on the use of aptamer-modified fluorescence upconversion nanoparticles. Microchim Acta 185:497

    Article  Google Scholar 

  27. Lisha KP, Anshup PT (2009) Enhanced visual detection of pesticides using gold nanoparticles. J Environ Sci Health B 44:697–705

    Article  CAS  Google Scholar 

  28. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318

    Article  CAS  Google Scholar 

  29. Zhang X, Servos MR, Liu J (2012) Instantaneous and quantitative functionalization of gold nanoparticles with Thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 134:7266–7269

    Article  CAS  Google Scholar 

  30. Pellegrino T, Sperling RA, Alivisatos AP, Parak WJ (2007) Gel electrophoresis of gold-DNA Nanoconjugates. J Biomed Biotechnol 2007:9

    Article  Google Scholar 

  31. Kurt H, Yüce M, Hussain B, Budak H (2016) Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens Bioelectron 81:280–286

    Article  CAS  Google Scholar 

  32. Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 9:2363–2371

    Article  CAS  Google Scholar 

  33. Zhao W, Chiuman W, Brook MA, Li Y (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem 8:727–731

    Article  CAS  Google Scholar 

  34. Urban PL, García-Ruiz C, García MÁ, Marina ML (2005) Separation and online preconcentration by multistep stacking with large-volume injection of anabolic steroids by capillary electrokinetic chromatography using charged cyclodextrins and UV-absorption detection. J Sep Sci 28:2200–2209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 31871878), Shandong Provincial Natural Science Foundation, China (No. ZR2018BC057), the Fundamental Research Funds for the Central Universities (No. 19CX02041A), and Key R&D Program of Shandong Province (No. 2018GSF118032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Haifeng Sun and Xuan Wang co-second authors.

Electronic supplementary material

ESM 1

(PDF 774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Sun, H., Wang, X. et al. An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles. Microchim Acta 186, 308 (2019). https://doi.org/10.1007/s00604-019-3422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3422-9

Keywords

Navigation