Skip to main content
Log in

Preparation of chiral graphene oxides by covalent attachment of chiral cysteines for voltammetric recognition of tartrates

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the preparation of a chiral graphene oxides (GOs) by covalent attachment of D- or L-cysteine using a one-step hydrothermal method. The resulting chiral functionalized GOs shows circular dichroism with intensities similar to those produced by the cysteines. This indicates that the chirality of cysteines is well preserved in the chiral GOs. The material is reasonably stable at temperatures from 20 to 200 °C and at pH values from 0 to 14. A glassy carbon electrode (GCE) was modified with the chiral GOs and then tested for recognition capability for L- and D-tartrate (0.5 mM). The enantioselectivity of the chiral GOs appears to be the result of a synergistic effect where GO increases the conductivity and cysteine provides the chiral environment. The method is assumed to provide a useful general scheme for development of advanced carbonaceous materials with chiral recognition capabilities.

Chiral graphene oxides produced by covalently attaching chiral amino acids displays effective enantioselective recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Milton FP, Govan J, Mukhinab MV, Gun’ko YK (2016) The chiral nano-world: chiroptically active quantum nanostructures. Nanoscale Horiz 1:14–26

    Article  CAS  Google Scholar 

  2. Shi LF, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) Synthesis and application of quantum dots FRET-based protease sensors. Chem Soc 128:10378–10379

    Article  CAS  Google Scholar 

  3. Kawasaki T, Araki Y, Hatase K, Suzuki K, Matsumoto A, Yokoi T, Kubota Y, Tatsumi T, Soai K (2015) Helical mesoporous silica as an inorganic heterogeneous chiral trigger for asymmetric autocatalysis with amplification of enantiomeric excess. Chem Commun 51:8742–8744

    Article  CAS  Google Scholar 

  4. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  6. Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113:5782–5816

    Article  CAS  Google Scholar 

  7. Zor E, Narváez EM, Alpaydin S, Bingol H, Ersoz M, Merkoçi A (2017) Graphene-based hybrid for enantioselective sensing applications. Biosens Bioelectron 87:410–416

    Article  CAS  Google Scholar 

  8. Gong ZS, Duan LP, Tang AN (2015) Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim Acta 182:1297–1304

    Article  CAS  Google Scholar 

  9. Hauser AW, Mardirossian N, Panetier JA, Gordon MH, Bell AT, Schwerdtfeger P (2014) Functionalized graphene as a gatekeeper for chiral molecules: an alternative concept for chiral separation. Angew Chem Int Ed 53:9957–9960

    Article  CAS  Google Scholar 

  10. Li WF, Liang JY, Yang WT, Deng JP (2014) Chiral functionalization of graphene oxide by optically active helical-substituted polyacetylene chains and its application in enantioselective crystallization. ACS Appl Mater Interfaces 6:9790–9798

    Article  CAS  Google Scholar 

  11. Jung JH, Moon SJ, Ahn J, Jaworski J, Shinkai SJ (2013) Controlled supramolecular assembly of helical silica nanotube-graphene hybrids for chiral transcription and separation. ACS Nano 7:2595–2601

    Article  CAS  Google Scholar 

  12. Ren CL, Chen Y, Zhang HY, Deng JP (2013) Noncovalent chiral functionalization of graphene with optically active helical polymers. Macromol Rapid Commun 34:1368–1374

    Article  CAS  Google Scholar 

  13. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  14. Zeng HD, Cao Y, Xie SF, Yang JH, Tang ZH, Wang XY, Sun LY (2013) Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures. Nanoscale Res Lett 8:133–138

    Article  Google Scholar 

  15. Peng SJ, Li LL, Han XP, Sun WP, Srinivasan M, Mhaisalkar SG, Cheng FY, Yan QY, Chen J (2014) Ramakrishna S, cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew Chem Int Ed 53:12594–12599

    CAS  Google Scholar 

  16. Achaby ME, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDFnanocomposite films. Appl Surf Sci 258:7668–7677

    Article  Google Scholar 

  17. Jiang J, He Y, Li SY, Cui H (2012) Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun 48:9634–9636

    Article  CAS  Google Scholar 

  18. Sun SD, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ (2013) Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434

    Article  CAS  Google Scholar 

  19. Mihklin YL, Kuklinskiy AV, Pavlenko NI, Varnek VA, Asanov IP, Okotrub AV, Selyutin GE, Solovyev LA (2002) Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites. Geochim Cosmochim Ac 66:4057–4067

    Article  Google Scholar 

  20. Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  Google Scholar 

  21. Li RY, Jiang YY, Zhou XY, Li ZJ, Gu ZG, Wang GL, Liu JK (2015) Significantly enhanced electrochemical performance of lithium titanate anode for lithium ion battery by the hybrid of nitrogen and sulfur co-doped graphene quantum dots. Electrochim Acta 178:303–311

    Article  CAS  Google Scholar 

  22. Qu D, Zheng M, Du P, Zhou Y, Zhang LG, Li D, Tan HQ, Zhao Z, Xie ZG, Sun ZC (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277

    Article  CAS  Google Scholar 

  23. Wang WJ, Hai X, Mao QX, Chen ML, Wang JH (2015) Polyhedral oligomeric silsesquioxane functionalized carbon dots for cell imaging. ACS Appl Mater Interfaces 7:16609–16616

    Article  CAS  Google Scholar 

  24. Liu NY, Liu J, Kong WQ, Li H, Huang H, Liu Y, Kang ZH (2014) One-step catalase controllable degradation of C3N4 for N-doped carbon dot green fabrication and their bioimaging applications. J Mater Chem B 2:5768–5774

    Article  CAS  Google Scholar 

  25. Xue MY, Zhang LL, Zou MB, Lan CQ, Zhan ZH, Zhao SL (2015) Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sensors Actuators B Chem 219:50–56

    Article  CAS  Google Scholar 

  26. Li LB, Yu B, You TY (2015) Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions. Biosens Bioelectron 74:263–269

    Article  Google Scholar 

  27. Meng CC, Zhi X, Li C, Li CF, Chen ZY, Qiu XS, Ding C, Ma LJ, Lu HM, Chen D, Liu GQ, Cui DX (2016) Graphene oxides decorated with carnosine as an adjuvant to modulate innate immune and improve adaptive immunity in vivo. ACS Nano 10:2203–2213

    Article  CAS  Google Scholar 

  28. Zhang ZH, Yu YJ, Wang P (2012) Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants. ACS Appl Mater Interfaces 4:990–996

    Article  CAS  Google Scholar 

  29. Bogomolova A, Komarova E, Reber K, Gerasimov T, Yavuz O, Bhatt S, Aldissi M (2009) Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal Chem 81:3944–3949

    Article  CAS  Google Scholar 

  30. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567

    Article  CAS  Google Scholar 

  31. Zhang GJ, Hu HL, Li H, Zhao FF, Liu Y, He XD, Huang H, Xu Y, Wei Y, Kang ZH (2013) Homochiral metal-organic porous materials for enantioselective recognition and electrocatalysis. CrystEngComm 15:3288–3291

    Article  CAS  Google Scholar 

  32. Han CP, Li HB (2008) Chiral recognition of amino acids based on cyclodextrin-capped quantum dots. Small 4:1344–1350

    Article  CAS  Google Scholar 

  33. Zhang GJ, Zhao FF, Hu HL, Li H, Dong H, Han X, Huang H (2014) Nonporous homochiral copper-based coordination polymers for enantioselective recognition and electrocatalysis. Inorg Chem Commun 40:31–34

    Article  Google Scholar 

  34. Wattanakit C, Côme YBS, Lapeyre V, Bopp PA, Heim M, Yadnum S, Nokbin S, Warakulwit C, Limtrakul J, Kuhn A (2014) Enantioselective recognition at mesoporous chiral metal surfaces. Nat Commun 5:3325

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mega Kar and Dr. Katherine Nairn in Monash University for their discussion and modification of this paper. This work is supported by National MCF Energy R&D Program (2018YFE0306105), the National Natural Science Foundation of China (51725204, 51572179, 21771132, 21471106), the Natural Science Foundation of Jiangsu Province (BK20161216), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Huang or Douglas R. MacFarlane.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.72 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Hu, L., Sun, Y. et al. Preparation of chiral graphene oxides by covalent attachment of chiral cysteines for voltammetric recognition of tartrates. Microchim Acta 186, 298 (2019). https://doi.org/10.1007/s00604-019-3415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3415-8

Keywords

Navigation