Skip to main content
Log in

Fluorometric determination of mercury(II) using positively charged gold nanoparticles, DNA-templated silver nanoclusters, T-Hg(II)-T interaction and exonuclease assisted signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for detection of Hg2+ by using positively charged gold nanoparticles ((+)AuNPs) as a quencher of the fluorescence of DNA-capped silver nanoclusters (DNA-AgNCs) which are negatively charged. In the presence of Hg2+, a DNA duplex is formed through T-Hg2+-T coordination chemistry. The duplex can be digested by exonuclease III to form smaller DNA fragments. This leads to the release of the AgNCs and the recovery of fluorescence, best measured at excitation/emission wavelengths of 460/530 nm. The (+)AuNPs and Hg2+ are also released and can be reused for target recycling signal amplification. Based on these findings, a method is worked out for the determination of Hg2+ that works in the 5.0 pM to 10 nM concentration range and has a detection limit as low as 2.3 pM. It is highly selective because of the highly specific formation of T-Hg2+-T bonds.

By using ultrastable and positively charged gold nanoparticles as fluorescence quenchers and exonuclease assisted signal amplification, a method is developed for the sensitive and selective detection of Hg2+ in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ma DL, Lin S, Wang W, Yang C, Leung CH (2017) Luminescent chemosensors by using cyclometalated iridium (III) complexes and their applications. Chem Sci 8(2):878–889

    Article  CAS  Google Scholar 

  2. Kim TI, Hwang B, Lee B, Bae J, Kim Y (2018) Selective monitoring and imaging of eosinophil peroxidase activity with a J-aggregating probe. J Am Chem Soc 140(37):11771–11776

    Article  CAS  Google Scholar 

  3. Sedgwick AC, Dou WT, Jiao JB, Wu L, Williams GT, Sessler JL, James TD (2018) An ESIPT Probe for the Ratiometric Imaging of Peroxynitrite Facilitated by Binding to Aβ-Aggregates. J Am Chem Soc 140(43):14267–14271

    Article  CAS  Google Scholar 

  4. Vellaisamy K, Li G, Ko CN, Zhong HJ, Fatima S, Kwan HY, Wong CY (2018) Cell imaging of dopamine receptor using agonist labeling iridium (III) complex. Chem Sci 9(5):1119–1125

    Article  CAS  Google Scholar 

  5. Wu C, Wu KJ, Kang TS, Wang HMD, Leung CH, Liu JB, Ma DL (2018) Iridium-based probe for luminescent nitric oxide monitoring in live cells. Sci Rep 8:12467

    Article  Google Scholar 

  6. Wang W, Wu C, Yang C, Li G, Han QB, Li S, Ma DL (2018) A dual-functional luminescent probe for imaging H2S in living zebrafish and discrimination hypoxic cells from normoxic cells. Sensor Actuators B Chem 255:1953–1959

    Article  CAS  Google Scholar 

  7. Zang J, Li C, Zhou K, Dong H, Chen B, Wang F, Zhao G (2016) Nanomolar Hg2+ detection using β-Lactoglobulin-stabilized fluorescent gold nanoclusters in beverage and biological media. Anal Chem 88(20):10275–10283

    Article  CAS  Google Scholar 

  8. Xu S, Liu Y, Yang H, Zhao K, Li J, Deng A (2017) Fluorescent nitrogen and sulfur co-doped carbon dots from casein and their applications for sensitive detection of Hg2+and biothiols and cellular imaging. Anal Chim Acta 964:150–160

    Article  CAS  Google Scholar 

  9. Furletov AA, Apyari VV, Garshev AV, Dmitrienko SG, Zolotov YA (2017) Triangular silver nanoplates as a spectrophotometric reagent for the determination of mercury (II). J Anal Chem 72(12):1203–1207

    Article  CAS  Google Scholar 

  10. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914

    Article  CAS  Google Scholar 

  11. Hou T, Li W, Liu X, Li F (2015) Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: a facile, sensitive, and highly specific MicroRNA assay. Anal Chem 87(22):11368–11374

    Article  CAS  Google Scholar 

  12. Chen T, Tan S, Li W, Zhu Y (2017) Amplified fluorescent detection of mercuric ions by conjugation of the ThT-induced G-Quadruplex based hybridization chain reaction. Anal Sci 33(12):1333–1337

    Article  Google Scholar 

  13. Chen J, Tong P, Lin Y, Lu W, He Y, Lu M, Zhang L, Chen G (2015) Highly sensitive fluorescent sensor for mercury based on hyperbranched rolling circle amplification. Analyst 140(3):907–911

    Article  CAS  Google Scholar 

  14. Ma J, Chen Y, Hou Z, Jiang W, Wang L (2013) Cascade signal amplification based on copper nanoparticle-reported rolling circle AmY. Chen, Z. Hou, W. Jiang and L. Wang, selective and sensitive mercuric (ii) ion detection based on quantum dots and nicking endonuclease assisted signal amplification. Biosens Bioelectron 43(4):84–87

    Article  CAS  Google Scholar 

  15. Wang G, Xu G, Zhu Y, Zhang X (2013) A "turn-on" carbon nanotube-Ag nanoclusters fluorescent sensor for sensitive and selective detection of Hg2+with cyclic amplification of exonuclease III activity. Chem Commun 50(6):747–750

    Article  Google Scholar 

  16. Kong RM, Song ZL, Meng HM, Zhang XB, Shen GL, Yu RQ (2014) A label-free electrochemical biosensor for highly sensitive and selective detection of DNA Via a dual-amplified strategy. Biosens Bioelectron 54:442–447

    Article  CAS  Google Scholar 

  17. Hu P, Zhu C, Jin L, Dong S (2012) An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification. Biosens Bioelectron 34(1):83–87

    Article  CAS  Google Scholar 

  18. Wang W, Bao T, Zeng X, Xiong H, Wen W, Zhang X, Wang S (2017) Ultrasensitive electrochemical DNA biosensor based on functionalized gold clusters/graphene nanohybrids coupling with exonuclease III-aided cascade target recycling. Biosens Bioelectron 91:183–189

    Article  CAS  Google Scholar 

  19. Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury (II) ions: a review. Microchim Acta 184(1):45–58

    Article  CAS  Google Scholar 

  20. Apyari VV, Arkhipova VV, Dmitrienko SG, Zolotov YA (2014) Using gold nanoparticles in spectrophotometry. J Anal Chem 69(1):1–11

    Article  CAS  Google Scholar 

  21. Wang W, Kong T, Zhang D, Zhang J, Cheng G (2015) Label-free MicroRNA detection based on fluorescence quenching of gold nanoparticles with a competitive hybridization. Anal Chem 87(21):10822–10829

    Article  CAS  Google Scholar 

  22. Qian R, Ding L, Yan L, Lin M, Ju H (2014) A robust probe for lighting up intracellular telomerase via primer extension to open a nicked molecular beaco. J Am Chem Soc 136(23):8205–8028

    Article  CAS  Google Scholar 

  23. Wu P, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135(14):5254–5257

    Article  CAS  Google Scholar 

  24. Ma H, Xue N, Li Z, Xing K, Miao X (2018) Ultrasensitive detection of miRNA-155 using multi-walled carbon nanotube-gold nanocomposites as a novel fluorescence quenching platform. Sensor Actuators B Chem 266:221–227

    Article  CAS  Google Scholar 

  25. Miao X, Cheng Z, Ma H, Li Z, Xue N, Wang P (2017) Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem 90(2):1098–1103

    Article  Google Scholar 

  26. Xie H, Dong J, Duan J, Waterhouse GI, Hou J, Ai S (2018) Visual and ratiometric fluorescence detection of Hg2+ based on a dual-emission carbon dots-gold nanoclusters nanohybrid. Sensor Actuators B Chem 259:1082–1089

    Article  CAS  Google Scholar 

  27. Gao ZH, Lin ZZ, Chen XM, Lai ZZ, Huang ZY (2016) Carbon dots-based fluorescent probe for trace Hg2+ detection in water sample. Sensor Actuators B Chem 222:965–971

    Article  CAS  Google Scholar 

  28. Yun W, Xiong W, Wu H, Fu M, Huang Y, Liu X, Yang L (2017) Graphene oxide-based fluorescent “turn-on” strategy for Hg2+ detection by using catalytic hairpin assembly foramplification. Sensor Actuators B Chem 249:493–498

    Article  CAS  Google Scholar 

  29. Huang D, Niu C, Wang X, Lv X, Zeng G (2013) “Turn-on” fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal Chem 85:1164–1170

    Article  CAS  Google Scholar 

  30. Deng L, Ouyang X, Jin J, Ma C, Jiang Y, Zheng J, Li J, Li Y, Tan W, Yang R (2013) Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming Ag/Hg amalgam. Anal Chem 85:8594–8600

    Article  CAS  Google Scholar 

  31. Bian RX, Wu XT, Chai F, Li L, Zhang LY, Wang TT, Wang CG, Su ZM (2017) Facile preparation of fluorescent Au nanoclusters-based test papers for recyclable detection of Hg2+ and Pb2+. Sensor Actuators B Chem 241:592–600

    Article  CAS  Google Scholar 

  32. Yu L, Lan W, Xu H, Chen H, Bai L, Wang W (2017) Label-free detection of Hg2+ based on -triggered toehold binding, exonuclease III assisted target recycling and hybridization chain reaction. Sensor Actuators B Chem 248:411–418

    Article  CAS  Google Scholar 

  33. Hong M, Zeng B, Li M, Xu X, Chen G (2018) An ultrasensitive conformation-dependent colorimetric probe for the detection of mercury (II) using exonuclease III-assisted target recycling and gold nanoparticles. Microchim Acta 185(1):72

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21305053), the Natural Science Foundation of Xuzhou City (KC18140), and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongbing Li or Xiangmin Miao.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Xue, N., Wu, S. et al. Fluorometric determination of mercury(II) using positively charged gold nanoparticles, DNA-templated silver nanoclusters, T-Hg(II)-T interaction and exonuclease assisted signal amplification. Microchim Acta 186, 317 (2019). https://doi.org/10.1007/s00604-019-3388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3388-7

Keywords

Navigation