Microchimica Acta

, 186:262 | Cite as

Amperometric sandwich immunoassay for determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbon

  • Bei LiuEmail author
  • Lingsong Lu
Original Paper


An ultrasensitive sandwich-type electrochemical immunosensor was developed for the amperometric determination of serum myeloperoxidase (MPO). The method is making use of (a) gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC); and (b) horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2) immobilized on AuNP@GMC. MPO capture antibody (Ab1) was immobilized on the electrode modified with an AuNP-graphene oxide nanocomposite. The sandwich immunoreaction leads to the formation of the complex composed of Ab1, MPO, and HRP@Ab2. An amplified electrochemical signal is produced by electrocatalytic reduction of H2O2 (at a typical voltage of −0.18 V vs. Ag/AgCl) in the presence of enzymatically oxidized thionine. The peak current of thionine was measured using differential pulse voltammetry. Under optimized steady-state conditions, the reduction peak increases in the 1 to 300 pg.mL−1 MPO concentration range, and the detection limit is 0.1 pg.mL−1 (at S/N = 3).

Graphical abstract

Schematic presentation of AuNP-GO based sandwich-type electrochemical immunoassay for the determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC) as a carrier for horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2)


Myeloperoxidase Sandwich-type immunosensor Graphene oxide Graphitized mesoporous carbons Gold nanoparticles 



This work was financially supported by Medical Scientific Research Foundation of Zhejiang Province (2018PY022 and 2017PY024), Public Welfare from Science and Technology Department of Zhejiang Province (2017C33201), Zhejiang Provincial Natural Science Foundation of China (LQ19H090019) and the National Natural Science Foundation of China (81301514).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3359_MOESM1_ESM.docx (64 kb)
ESM 1 (DOCX 63 kb)


  1. 1.
    Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, Topol EJ, Sprecher DL, Hazen SL (2001) Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 286:2136–2142. CrossRefPubMedGoogle Scholar
  2. 2.
    Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595–1604. CrossRefPubMedGoogle Scholar
  3. 3.
    Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Münzel T, Simoons ML, Hamm CW (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108:1440–1445. CrossRefPubMedGoogle Scholar
  4. 4.
    Apple FS, Smith SW, Pearce LA, Schulz KM, Ler R, Murakami MM (2011) Myeloperoxidase improves risk stratification in patients with ischemia and normal cardiac troponin I concentrations. Clin Chem 57:603–608. CrossRefPubMedGoogle Scholar
  5. 5.
    Zelzer S, Khoschsorur G, Stettin M, Weihrauch G, Truschnig-Wilders M (2009) Determination of myeloperoxidase in EDTA plasma: comparison of an enzyme-linked immunosorbent assay with a chemiluminescent automated immunoassay. Clin Chim Acta 406:62–65. CrossRefPubMedGoogle Scholar
  6. 6.
    Windmiller JR, Chinnapareddy S, Santhosh P, Halámek J, Chuang MC, Bocharova V, Tseng TF, Chou TY, Katz E, Wang J (2010) Strip-based amperometric detection of myeloperoxidase. Biosens Bioelectron 26:886–889. CrossRefPubMedGoogle Scholar
  7. 7.
    Bekhit M, Gorski W (2019) Electrochemical assays and immunoassays of the myeloperoxidase/SCN-/H2O2 system. Anal Chem 91:3163–3169. CrossRefPubMedGoogle Scholar
  8. 8.
    Kämäräinen S, Mäki M, Tolonen T, Palleschi G, Virtanen V, Micheli L, Sesay AM (2018) Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta 188:50–57. CrossRefPubMedGoogle Scholar
  9. 9.
    Leonardo S, Kilcoyne J, Samdal IA, Miles CO, O’Sullivan CK, Diogène J, Campàs M (2018) Detection of azaspiracids in mussels using electrochemical immunosensors for fast screening in monitoring programs. Sensors Actuators B Chem 262:818–827. CrossRefGoogle Scholar
  10. 10.
    Bekir K, Bousimma F, Barhoumi H, Fedhila K, Maaref A, Bakhrouf A, Ouada HB, Namour P, Jaffrezic-Renault N, Mansour HB (2015) An investigation of the well-water quality: immunosensor for pathogenic Pseudomonas aeruginosa detection based on antibody-modified poly(pyrrole-3 carboxylic acid) screen-printed carbon electrode. Environ Sci Pollut Res 22:18669–18675. CrossRefGoogle Scholar
  11. 11.
    Lu L, Liu B, Liu C, Xie G (2010) Amperometric immunosensor for myeloperoxidase in human serum based on a multi-wall carbon nanotubes-ionic liquid-cerium dioxide film-modified electrode. Bull Kor Chem Soc 31:3259–3264. CrossRefGoogle Scholar
  12. 12.
    Lu L, Liu B, Li S, Zhang W, Xie G (2011) Improved electrochemical immunosensor for myeloperoxidase in human serum based on nanogold/cerium dioxide-BMIMPF6/L-Cysteine composite film. Colloids Surf B Biointerfaces 86:339–344. CrossRefPubMedGoogle Scholar
  13. 13.
    Liu B, Lu L, Li Q, Xie G (2011) Disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film containing gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes. Microchim Acta 173:513–520. CrossRefGoogle Scholar
  14. 14.
    Lin KC, Kunduru V, Bothara M, Rege K, Prasad S, Ramakrishna BL (2010) Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens Bioelectron 25:2336–2342. CrossRefPubMedGoogle Scholar
  15. 15.
    Barallat J, Olivé-Monllau R, Gonzalo-Ruiz J, Ramírez-Satorras R, Muñoz-Pascual FX, Ortega AG, Baldrich E (2013) Chronoamperometric magneto immunosensor for myeloperoxidase detection in human plasma based on a magnetic switch produced by 3d laser sintering. Anal Chem 85:9049–9056. CrossRefPubMedGoogle Scholar
  16. 16.
    Wen Y, Yuan J, Chen J, Zhao Y, Niu Y, Yu C (2018) Amperometric myeloperoxidase immunoassay based on the use of CuPdPt nanowire networks. Microchim Acta 185:55–62. CrossRefGoogle Scholar
  17. 17.
    Wang Y, Ma H, Wang X, Pang X, Wu D, Du B, Wei Q (2015) Novel signal amplification strategy for ultrasensitive sandwich-type electrochemical immunosensor employing Pd–Fe3O4-GS as the matrix and SiO2 as the label. Biosens Bioelectron 74:59–65. CrossRefPubMedGoogle Scholar
  18. 18.
    Liu J, Lin G, Xiao C, Xue Y, Yang A, Ren H, Lu W, Zhao H, Li X, Yuan Z (2015) Sensitive electrochemical immunosensor for α-fetoprotein based on graphene/SnO2/Au nanocomposite. Biosens Bioelectron 71:82–87. CrossRefPubMedGoogle Scholar
  19. 19.
    Wu D, Guo Z, Liu Y, Guo A, Lou W, Fan D, Wei Q (2015) Sandwich-type electrochemical immunosensor using dumbbell-like nanoparticles for the determination of gastric cancer biomarker CA72-4. Talanta 134:305–309. CrossRefPubMedGoogle Scholar
  20. 20.
    Regiart M, Fernández O, Vicario A, Villarroel-Rocha J, Sapag K, Messina GA, Raba J, Bertolino FA (2018) Mesoporous immunosensor applied to zearalenone determination in Amaranthus cruentus seeds. Microchem J 141:388–394. CrossRefGoogle Scholar
  21. 21.
    Justino CIL, Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TAP (2017) Graphene based sensors and biosensors. Trends Anal Chem 91:53–66. CrossRefGoogle Scholar
  22. 22.
    Lu L, Liu B, Leng J, Wang K, Ma X, Wu S (2016) Electrochemical sandwich immunoassay for human epididymis-specific protein 4 using a screen-printed electrode modified with graphene sheets and gold nanoparticles, and applying a modular magnetic detector device produced by 3D laser sintering. Microchim Acta 183:837–843. CrossRefGoogle Scholar
  23. 23.
    Kosowska K, Domalik-Pyzik P, Nocuń M, Chłopek J (2018) Chitosan and graphene oxide/reduced graphene oxide hybrid nanocomposites – evaluation of physicochemical properties. Mater Chem Phys 216:28–36. CrossRefGoogle Scholar
  24. 24.
    Lee J, Kim J, Kim S, Min DH (2016) Biosensors based on graphene oxide and its biomedical application. Adv Drug Deliv Rev 105:275–287. CrossRefPubMedGoogle Scholar
  25. 25.
    El-Shafai NM, El-Khouly ME, El-Kemary M, Ramadan MS, Derbalah AS, Masoud MS (2019) Fabrication and characterization of graphene oxide–titanium dioxide nanocomposite for degradation of some toxic insecticides. J Ind Eng Chem 69:315–323. CrossRefGoogle Scholar
  26. 26.
    Afzali M, Mostafavi A, Shamspur T (2019) Decoration of graphene oxide with NiO@polypyrrole core-shell nanoparticles for the sensitive and selective electrochemical determination of piceatannol in grape skin and urine samples. Talanta 196:92–99. CrossRefPubMedGoogle Scholar
  27. 27.
    Fu X, Wang Y, Liu Y, Liu H, Fu L, Wen J, Li J, Wei P, Chen L (2019) A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I. Analyst 144:1582–1589. CrossRefPubMedGoogle Scholar
  28. 28.
    Liu X, Li W-J, Li L, Yang Y, Mao LG, Peng Z (2014) A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sensors Actuators B Chem 191:408–414. CrossRefGoogle Scholar
  29. 29.
    Saeed AA, Sánchez JLA, O’Sullivan CK, Abbas MN (2017) DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 118:91–99. CrossRefPubMedGoogle Scholar
  30. 30.
    Walcarius A (2012) Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. Trends Anal Chem 38:79–97. CrossRefGoogle Scholar
  31. 31.
    Garcia-Perez T, Hong SG, Kim J, Ha S (2016) Entrapping cross-linked glucose oxidase aggregates within a graphitized mesoporous carbon network for enzymatic biofuel cells. Enzym Microb Technol 90:26–34. CrossRefGoogle Scholar
  32. 32.
    Liu B, Lu L, Hua E, Jiang S, Xie G (2012) Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchim Acta 178:163–170. CrossRefGoogle Scholar
  33. 33.
    Yang J, Shen H, Zhang X, Tao Y, Xiang H, Xie G (2016) A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres. Biosens Bioelectron 77:1119–1125. CrossRefPubMedGoogle Scholar
  34. 34.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Reproductive GeneticsWomen’s Hospital Zhejiang University School of MedicineHangzhouChina
  2. 2.Department of Central Laboratory, Affiliated Hangzhou First People’s HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations