Skip to main content
Log in

One-pot fabrication of magnetic porous Fe3C/MnO/graphitic carbon microspheres for dispersive solid-phase extraction of herbicides prior to their quantification by HPLC

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Magnetic porous microspheres composed of Fe3C, MnO and graphitic carbon (Fe3C/MnO/GC) were prepared by a one-pot method. A polycondensate obtained from urea and formaldehyde served as the carbon source and was calcined in the presence of metallic iron and manganese to yield Fe3C/MnO/GC. The resultant hybrid has highly mesoporous architecture, large specific surface, graphitic structure and adequate saturation magnetism. It is shown to possess excellent pre-concentration ability for herbicides (monuron, chlortoluron, atrazine and terbutylhylazine). The sorbent can be easily separated and has a long service lifetime (>25 cycles). Under optimized conditions, the sorbent excels by good recoveries (78–120%), high enrichment factors (45–50) and good precision (RSDs ≤10.7%). The limits of detection are 0.01–0.10 μg L−1 for (spiked) water samples, 0.22–0.87 μg kg−1 for grape samples, and 0.18–0.74 μg kg−1 for potato samples. This work offers a new strategy for the construction of magnetic bimetallic heterostructured GC hybrids.

Schematic presentation of magnetic porous Fe3C/MnO/graphitic carbon microspheres and their application for the enrichment of trace level herbicides prior to HPLC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lei Y, Chen B, You L, He M, Hu B (2017) Polydimethylsiloxane/MIL-100(Fe) coated stir bar sorptive extraction-high performance liquid chromatography for the determination of triazines in environmental water samples. Talanta 175:158–167. https://doi.org/10.1016/j.talanta.2017.05.040

    Article  CAS  PubMed  Google Scholar 

  2. Shah J, Jan MR, Tasmia (2018) Magnetic chitosan graphene oxide composite for solid phase extraction of phenylurea herbicides. Carbohydr Polym 199:461–472. https://doi.org/10.1016/j.carbpol.2018.07.050

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, Wang C, Wu Q, Wang Z (2015) Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides. Anal Chim Acta 870:67–74. https://doi.org/10.1016/j.aca.2015.02.036

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Li M, Jiao C, Song Y, Wang C, Wu Q, Wang Z (2017) Preparation of a magnetic porous organic polymer for the efficient extraction of phenylurea herbicides. J Chromatogr A 1519:19–27. https://doi.org/10.1016/j.chroma.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  5. Mei M, Huang X, Yang X, Luo Q (2016) Effective extraction of triazines from environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction. Anal Chim Acta 937:69–79. https://doi.org/10.1016/j.aca.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  6. Wu J, Ma R, Hao L, Wang C, Wu Q, Wang Z (2017) Triphenylamine-based hypercrosslinked organic polymer as adsorbent for the extraction of phenylurea herbicides. J Chromatogr A 1520:48–57. https://doi.org/10.1016/j.chroma.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  7. Zhao F, Wang S, She Y, Zhang C, Zheng L, Jin M, Shao H, Jin F, Du X, Wang J (2017) Subcritical water extraction combined with molecular imprinting technology for sample preparation in the detection of triazine herbicides. J Chromatogr A 1515:17–22. https://doi.org/10.1016/j.chroma.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  8. Xu J, Zhang Y, Wu K, Zhang L, Ge S, Yu J (2017) A molecularly imprinted polypyrrole for ultrasensitive voltammetric determination of glyphosate. Microchim Acta 184(7):1959–1967. https://doi.org/10.1007/s00604-017-2200-9

    Article  CAS  Google Scholar 

  9. Huang X, Zhu X, Pei M (2018) Solid-phase microextraction of sulfonylurea herbicides by using borate-reinforced multiple monolithic fibers. Mikrochimica Acta 185(4):226. https://doi.org/10.1007/s00604-018-2763-0

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Sun Y, Yuan L, Liang L, Jiang Y, Piao H, Song D, Yu A, Wang X (2018) Packed hybrids of gold nanoparticles and layered double hydroxide nanosheets for microextraction of triazine herbicides from maize. Mikrochimica Acta 185(7):336. https://doi.org/10.1007/s00604-018-2862-y

    Article  CAS  PubMed  Google Scholar 

  11. Fresco-Cala B, Cárdenas S, Valcárcel M (2015) Improved microextraction of selected triazines using polymer monoliths modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 183(1):465–474. https://doi.org/10.1007/s00604-015-1673-7

    Article  CAS  Google Scholar 

  12. Suleman H, Maulud AS, Shah SN, Man Z, Mutalib MIA (2018) Thermodynamic modelling of liquid-liquid extraction systems involving ionic liquids: a new approach. J Mol Liq 252:18–23. https://doi.org/10.1016/j.molliq.2017.12.116

    Article  CAS  Google Scholar 

  13. Luo X, Zhang F, Ji S, Yang B, Liang X (2014) Graphene nanoplatelets as a highly efficient solid-phase extraction sorbent for determination of phthalate esters in aqueous solution. Talanta 120:71–75. https://doi.org/10.1016/j.talanta.2013.11.079

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Qi X, Zhang L (2018) 3D hierarchical magnetic hollow sphere-like CuFe2O4 combined with HPLC for the simultaneous determination of Sudan I–IV dyes in preserved bean curd. Food Chem 241:268–274. https://doi.org/10.1016/j.foodchem.2017.08.113

  15. Zhou T, Ding J, He Z, Li J, Liang Z, Li C, Li Y, Chen Y, Ding L (2018) Preparation of magnetic superhydrophilic molecularly imprinted composite resin based on multi-walled carbon nanotubes to detect triazines in environmental water. Chem Eng J 334:2293–2302. https://doi.org/10.1016/j.cej.2017.11.185

    Article  CAS  Google Scholar 

  16. Wang H, Jiang Y, Manthiram A (2019) N-doped Fe3C@C as an efficient polyselenide reservoir for high-performance sodium-selenium batteries. Energy Storage Mater 16:374–382. https://doi.org/10.1016/j.ensm.2018.06.014

    Article  Google Scholar 

  17. Zhang Y, Zai J, He K, Qian X (2018) Fe3C nanoparticles encapsulated in highly crystalline porous graphite: salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability. Chem Commun 54(25):3158–3161. https://doi.org/10.1039/c8cc01057a

    Article  CAS  Google Scholar 

  18. You Y, Yoshimura M, Cholake S, Lee G-H, Sahajwalla V, Joshi R (2018) A controlled carburization process to obtain graphene-Fe3C-Fe composites. Adv Mater Interfaces 5(16):1800599. https://doi.org/10.1002/admi.201800599

    Article  CAS  Google Scholar 

  19. Zhang J, Wang K, Xu Q, Zhou Y, Cheng F, Guo S (2015) Beyond YolkShell nanoparticles: Fe3O4@Fe3C Core@Shell nanoparticles as yolks and carbon Nanospindles as shells for efficient Lithium ion storage. ACS Nano 9(3):3369–3376. https://doi.org/10.1021/acsnano.5b00760

    Article  CAS  PubMed  Google Scholar 

  20. Wang Q, Zhang W, Guo C, Liu Y, Wang C, Guo Z (2017) In situ construction of 3D interconnected FeS@Fe3C@Graphitic carbon networks for high-performance sodium-ion batteries. Adv Funct Mater 27(41):1703390. https://doi.org/10.1002/adfm.201703390

    Article  CAS  Google Scholar 

  21. Chen Z, Gao X, Wei X, Wang X, Li Y, Wu T, Guo J, Gu Q, Wu WD, Chen XD, Wu Z, Zhao D (2017) Directly anchoring Fe3C nanoclusters and FeNx sites in ordered mesoporous nitrogen-doped graphitic carbons to boost electrocatalytic oxygen reduction. Carbon 121:143–153. https://doi.org/10.1016/j.carbon.2017.05.078

    Article  CAS  Google Scholar 

  22. Zhou Q, Jiang X, Guo Y, Zhang G, Jiang W (2018) An ultra-high surface area mesoporous carbon prepared by a novel MnO-templated method for highly effective adsorption of methylene blue. Chemosphere 201:519–529. https://doi.org/10.1016/j.chemosphere.2018.03.045

    Article  CAS  PubMed  Google Scholar 

  23. Santana-Mayor A, Socas-Rodriguez B, Afonso MDM, Palenzuela-Lopez JA, Rodriguez-Delgado MA (2018) Reduced graphene oxide-coated magnetic-nanoparticles as sorbent for the determination of phthalates in environmental samples by micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1565:36–47. https://doi.org/10.1016/j.chroma.2018.06.031

    Article  CAS  PubMed  Google Scholar 

  24. Fu G, Yan X, Chen Y, Xu L, Sun D, Lee JM, Tang Y (2018) Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv Mater 30(5). https://doi.org/10.1002/adma.201704609

  25. Lu XF, Gu LF, Wang JW, Wu JX, Liao PQ, Li GR (2017) Bimetal-organic framework derived CoFe2O4/C porous hybrid Nanorod arrays as high-performance Electrocatalysts for oxygen evolution reaction. Adv Mater 29(3). https://doi.org/10.1002/adma.201604437

  26. Huang Z, Pan H, Yang W, Zhou H, Gao N, Fu C, Li S, Li H, Kuang Y (2018) In situ self-template synthesis of Fe-N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction. ACS Nano 12(1):208–216. https://doi.org/10.1021/acsnano.7b05832

    Article  CAS  PubMed  Google Scholar 

  27. Tong Y, Liu X, Zhang L (2019) Green construction of Fe3O4@GC submicrocubes for highly sensitive magnetic dispersive solid-phase extraction of five phthalate esters in beverages and plastic bottles. Food Chem 277:579–585. https://doi.org/10.1016/j.foodchem.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Zhu J, Niu Y, Chen Z, Liu Y, Liu S, Xu M, Li CM, Jiang J (2017) Efficient production of coaxial Core–Shell MnO@Carbon Nanopipes for sustainable electrochemical energy storage applications. ACS Sustain Chem Eng 5(7):6288–6296. https://doi.org/10.1021/acssuschemeng.7b01256

    Article  CAS  Google Scholar 

  29. Lou Z, Cao Z, Xu J, Zhou X, Zhu J, Liu X, Ali Baig S, Zhou J, Xu X (2017) Enhanced removal of As(III)/(V) from water by simultaneously supported and stabilized Fe-Mn binary oxide nanohybrids. Chem Eng J 322:710–721. https://doi.org/10.1016/j.cej.2017.04.079

    Article  CAS  Google Scholar 

  30. Geng HR, Miao SS, Jin SF, Yang H (2015) A newly developed molecularly imprinted polymer on the surface of TiO2 for selective extraction of triazine herbicides residues in maize, water, and soil. Anal Bioanal Chem 407(29):8803–8812. https://doi.org/10.1007/s00216-015-9039-x

    Article  CAS  PubMed  Google Scholar 

  31. Li N, Wu L, Nian L, Song Y, Lei L, Yang X, Wang K, Wang Z, Zhang L, Zhang H, Yu A, Zhang Z (2015) Dynamic microwave assisted extraction coupled with dispersive micro-solid-phase extraction of herbicides in soybeans. Talanta 142:43–50. https://doi.org/10.1016/j.talanta.2015.04.038

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Sun Y, Xu B, Li X, Wang X, Zhang H, Song D (2015) Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid-liquid microextraction for the determination of triazine herbicides in oilseeds. Anal Chim Acta 888:67–74. https://doi.org/10.1016/j.aca.2015.07.028

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Jia J, Wang M, Zhang H, Yan H, Qiao F (2017) Bifunctionalized ordered mesoporous organosilica synthesized in deep eutectic solvent for extraction of triazine herbicides from watermelon. J Chromatogr A 1529:50–56. https://doi.org/10.1016/j.chroma.2017.10.074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (Grant Nos. 21707061 and 51672116) and Research Fund for the Doctoral Program of Liaoning Province (Grant No. 20180540060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueyan Liu or Lei Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3.53 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Y., Liu, X. & Zhang, L. One-pot fabrication of magnetic porous Fe3C/MnO/graphitic carbon microspheres for dispersive solid-phase extraction of herbicides prior to their quantification by HPLC. Microchim Acta 186, 256 (2019). https://doi.org/10.1007/s00604-019-3358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3358-0

Keywords

Navigation