Microchimica Acta

, 186:260 | Cite as

Rapid synthesis of a highly active and uniform 3-dimensional SERS substrate for on-spot sensing of dopamine

  • Bingyong Lin
  • Jiaming Chen
  • Palanisamy KannanEmail author
  • Yanbo Zeng
  • Bin Qiu
  • Longhua GuoEmail author
  • Zhenyu Lin
Original Paper


A rapid method is described for the preparation of a highly uniform and sensitive SERS substrate by an improved ‘drop-and-dry’ method. Gold nanobipyramids (Au NBPs) were prepared inside the nanoholes (nanowalls) of anodic aluminum oxide (AAO) templates with a typically 5-μm nanohole depth. The SERS substrate can be prepared by this method within 40 s and on large scale. The SERS signals obtained with this Au NBPs-AAO substrate is stronger by four-orders of magnitude compared to conventional a silicon wafer substrate. The SERS signal for dopamine (DA; measured at 1311 cm−1) is found to be enhanced by a factor of 2.2 × 108. The response to DA extends from 10 nM to 0.1 mM, and the limit of detection is 6.5 nM (at S/N = 3). The assay was applied to the determination of DA in spiked human serum.

Graphical abstract

Schematic presentation of a highly active and uniform 3-dimensional substrate composed of gold nanobipyramids and anodic aluminum oxide (Au NBP/AAO). It was used for on-spot sensing of dopamine.


Surface enhanced Raman spectroscopy Improved ‘drop-and-dry’ method Uniform SERS substrate Gold nanobipyramids On-spot detection 



This project was financially supported by the National Natural Science Foundation of China (21675028, 21575027, 21507041 and 21575025), Nature Sciences Funding of Fujian Province (2018 J01682), STS Key Project of Fujian Province (2017 T3007), the cooperative project of production and study in University of Fujian Province (2018Y4007), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R11).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3357_MOESM1_ESM.docx (3.1 mb)
ESM 1 (DOCX 3147 kb)


  1. 1.
    Sinha SS, Jones S, Pramanik A, Ray PC (2016) Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis. Acc Chem Res 49(12):2725–2735. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen JM, Huang YJ, Kannan P, Zhang L, Lin ZY, Zhang JW, Chen T, Guo LH (2016) Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88:2149–2155. CrossRefPubMedGoogle Scholar
  3. 3.
    Tang L, Li S, Han F, Liu L, Xu L, Ma W, Kuang H, Li A, Wang L, Xu C (2015) SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens Bioelectron 71:7–12. CrossRefPubMedGoogle Scholar
  4. 4.
    Lee YH, Shi W, Lee HK, Jiang R, Phang IY, Cui Y, Isa L, Yang Y, Wang J, Li S, Ling XY (2015) Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. Nat Commun 6:6990. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang Z, Fu Y, Yu W, Qin X, Xue Z, Liu Y, Luo D, Yan C, Sun X, Wang T (2016) Dynamically regulated Ag nanowire arrays for detecting molecular information of substrate-induced stretched cell growth. Adv Mater 28:9589–9595. CrossRefPubMedGoogle Scholar
  6. 6.
    Jiang L, Chen X, Lu N, Chi L (2014) Spatially confined assembly of nanoparticles. Acc Chem Res 47:3009–3017. CrossRefPubMedGoogle Scholar
  7. 7.
    Wang P, Xia M, Liang O, Sun K, Cipriano AF, Schroeder T, Liu H, Xie Y-H (2015) Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Anal Chem 87:10255–10261. CrossRefPubMedGoogle Scholar
  8. 8.
    Wu W, Liu L, Dai Z, Liu J, Yang S, Zhou L, Xiao X, Jiang C, Roy VAL (2015) Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals. Sci Rep 5:10208. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang T, Zhou J, Wang Y (2018) Simple, low-cost fabrication of highly uniform and reproducible SERS substrates composed of Ag–Pt nanoparticles. Nanomaterials 8(5):331. CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Vantasin S, Ji W, Tanaka Y, Kitahama Y, Wang M, Wongravee K, Gatemala H, Ekgasit S, Ozaki Y (2016) 3D SERS imaging using chemically synthesized highly symmetric nanoporous silver microparticles. Angew Chem Int Ed 55:8391–8395. CrossRefGoogle Scholar
  11. 11.
    Dukhyun C, Yeonho C, Soongweon H, Taewook K, LL P (2010) Self-organized hexagonal-nanopore SERS array. Small 6:1741–1744. CrossRefGoogle Scholar
  12. 12.
    Yu-Hung C, Syh-Yuh C (2004) Nanostructures formed by Ag nanowires. Nanotechnology 15:171–175. CrossRefGoogle Scholar
  13. 13.
    Wang HH, Cheng TY, Sharma P, Chiang FY, Chiu SW, Wang JK, Wang YL (2011) Transparent Raman-enhancing substrates for microbiological monitoring and in situ pollutant detection. Nanotechnology 22:385702. CrossRefPubMedGoogle Scholar
  14. 14.
    Liu TY, Tsai KT, Wang HH, Chen Y, Chen YH, Chao YC, Chang HH, Lin CH, Wang JK, Wang YL (2011) Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat Commun 2:538. CrossRefPubMedGoogle Scholar
  15. 15.
    Mu C, Yu Y, Liao W, Zhao X, Xu D, Chen X, Yu D (2005) Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition. Appl Phys Lett 87:113104. CrossRefGoogle Scholar
  16. 16.
    Kuo CG, Chen CC (2009) Technique for self-assembly of tin nanoparticles on anodic aluminum oxide (AAO) templates. Mater Trans 50:1102–1104. CrossRefGoogle Scholar
  17. 17.
    Ko H, Tsukruk VV (2008) Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering. Small 4:1980–1984. CrossRefPubMedGoogle Scholar
  18. 18.
    Wang H-H, Liu C-Y, Wu S-B, Liu N-W, Peng C-Y, Chan T-H, Hsu C-F, Wang J-K, Wang Y-L (2006) Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv Mater 18:491–495. CrossRefGoogle Scholar
  19. 19.
    Zhang C, Yi P, Peng L, Lai X, Chen J, Huang M, Ni J (2017) Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci Rep 7:39814. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Degardin K, Guillemain A, Roggo Y (2017) Comprehensive study of a handheld Raman spectrometer for the analysis of counterfeits of solid-dosage form medicines. J Spectrosc 2017:3154035. CrossRefGoogle Scholar
  21. 21.
    Sanchez-Iglesias A, Winckelmans N, Altantzis T, Bals S, Grzelczak M, Liz-Marzan LM (2017) High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J Am Chem Soc 139:107–110. CrossRefPubMedGoogle Scholar
  22. 22.
    Zhu T, Hu Y, Yang K, Dong N, Yu M, Jiang N (2017) A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. Coli O157:H7 with high sensitivity. Microchim Acta 185:30. CrossRefGoogle Scholar
  23. 23.
    Huang CC, Chen W (2018) A SERS method with attomolar sensitivity: a case study with the flavonoid catechin. Microchim Acta 185:120. CrossRefGoogle Scholar
  24. 24.
    Xu X, Ma X, Wang H, Wang Z (2018) Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Microchim Acta 185:325. CrossRefGoogle Scholar
  25. 25.
    Yu Z, Smith ME, Zhang J, Zhou Y, Zhang P (2018) Determination of trichloroethylene by using self-referenced SERS and gold-core/silver-shell nanoparticles. Microchim Acta 185:330. CrossRefGoogle Scholar
  26. 26.
    Lopez-Lorente AI, Picca RA, Izquierdo J, Kranz C, Mizaikoff B, Di Franco C, Cardenas S, Cioffi N, Palazzo G, Valentini A (2018) Ion beam sputtering deposition of silver nanoparticles and TiOx/ZnO nanocomposites for use in surface enhanced vibrational spectroscopy (SERS and SEIRAS). Microchim Acta 185:153. CrossRefGoogle Scholar
  27. 27.
    Shorie M, Kumar V, Kaur H, Singh K, Tomer VK, Sabherwal P (2018) Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Microchim Acta 185:158. CrossRefGoogle Scholar
  28. 28.
    Ren X, Cheshari EC, Qi J, Li X (2018) Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Microchim Acta 185:242. CrossRefGoogle Scholar
  29. 29.
    Gubernator NG, Zhang H, Staal RGW, Mosharov EV, Pereira DB, Yue M, Balsanek V, Vadola PA, Mukherjee B, Edwards RH, Sulzer D, Sames D (2009) Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324(5933):1441–1444. CrossRefPubMedGoogle Scholar
  30. 30.
    Schapira AHV (2002) Dopamine agonists and neuroprotection in Parkinson's disease. Eur J Neurol 9:7–14. CrossRefPubMedGoogle Scholar
  31. 31.
    Yuan Y, Yu X, Zhang Q, Chang M, Li L, Yang T, Chen Y, Pan H, Zhang S, Li L, Xu J (2016) Sensitive detection of polycyclic aromatic molecules: surface enhanced Raman scattering via π–π stacking. Anal Chem 88:4328–4335. CrossRefPubMedGoogle Scholar
  32. 32.
    Ciubuc J, Bennet K, Qiu C, Alonzo M, Durrer W, Manciu F (2017) Raman computational and experimental studies of dopamine detection. Biosensors 7(4):43. CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Baldwin JA, Vlčková B, Andrews MP, Butler IS (1997) Surface-enhanced Raman scattering of mercaptopyridines and pyrazinamide incorporated in silver colloid−adsorbate films. Langmuir 13:3744–3751. CrossRefGoogle Scholar
  34. 34.
    Wang T, Zheng R, Hu X, Zhang L, Dong S (2006) Templated assembly of gold nanoparticles into microscale tubules and their application in surface-enhanced Raman scattering. J Phys Chem B 110:14179–14185. CrossRefPubMedGoogle Scholar
  35. 35.
    Chen N, Ding P, Shi Y, Jin T, Su Y, Wang H, He Y (2017) Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal Chem 89:5072–5078. CrossRefPubMedGoogle Scholar
  36. 36.
    Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803. CrossRefGoogle Scholar
  37. 37.
    McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285. CrossRefPubMedGoogle Scholar
  38. 38.
    Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci U S A 101:17930–17935. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fang W, Zhang X, Chen Y, Wan L, Huang W, Shen A, Hu J (2015) Portable SERS-enabled micropipettes for microarea sampling and reliably quantitative detection of surface organic residues. Anal Chem 87:9217–9224. CrossRefPubMedGoogle Scholar
  40. 40.
    Rahmani H, Sajedi RH (2019) Aequorin as a sensitive and selective reporter for detection of dopamine: a photoprotein inhibition assay approach. Int J Biol Macromol 122:677–683. CrossRefPubMedGoogle Scholar
  41. 41.
    Lee M, Lee D, Jung N, Yun M, Yim C, Jeon S (2011) Evaporation of water droplets from hydrophobic and hydrophilic nanoporous microcantilevers. Appl Phys Lett 98:Artn 013107. CrossRefGoogle Scholar
  42. 42.
    Kim JY, Kim H, Kim BH, Chang T, Lim J, Jin HM, Mun JH, Choi YJ, Chung K, Shin J, Fan S, Kim SO (2016) Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nat Commun 7:12911. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Luo Z, Peng A, Fu H, Ma Y, Yao J, Loo BH (2008) An application of AAO template: orderly assembled organic molecules for surface-enhanced Raman scattering. J Mater Chem 18:133–138. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nanomedicine and Nanobiosensing, MOE Key laboratory for analytical science of food safety and biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of ChemistryFuzhou UniversityFuzhouPeople’s Republic of China
  2. 2.College of Biological, Chemical Sciences and EngineeringJiaxing UniversityJiaxingPeople’s Republic of China

Personalised recommendations