Skip to main content
Log in

A fluorometric paper test for chromium(VI) based on the use of N-doped carbon dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Water-soluble nitrogen-doped carbon quantum dots (C-dots) were fabricated by microwave-induced decomposition of the precursor materials citric acid and N,N′-bis(2-aminoethyl)-1,2-ethanediamine. The C-dots were placed on portable paper strips with novel origami designs to simplified user operations. The intensity of the blue fluorescence, best measured at excitation/emission wavelengths of 330/420 nm, depends on the pH value in the range from pH 2 to 12. The C-dots on the paper stripe are shown to be a sensitive fluorescent probe for chromium(VI) via an inner filter effect. Response is linear in the 0.08 to 1 mM concentration range, and the detection limit (at S/N = 3) is 0.14 mM. The test was applied to the determination of chromium(VI) in (spiked) environmental water samples.

Schematic presentation of the water-soluble nitrogen-doped carbon dots (C-dots) as a fluorescent probe for Cr6+ based on an inner filter effect. The three-dimensional paper analytical device integrating C-dots was applied to the determination of Cr6+ in (spiked) environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li S, Huang J, Chen Z, Chen G, Lai Y (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5(1):31–55

    Article  CAS  Google Scholar 

  2. Chen G-H, Chen W-Y, Yen Y-C, Wang C-W, Chang H-T, Chen C-F (2014) Detection of mercury (II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86(14):6843–6849

    Article  CAS  Google Scholar 

  3. Faham S, Khayatian G, Golmohammadi H, Ghavami R (2018) A paper-based optical probe for chromium by using gold nanoparticles modified with 2,2-thiodiacetic acid and smartphone camera readout. Microchim Acta 185(8):374

    Article  Google Scholar 

  4. Chatterjee S, Sinha Mahapatra P, Ibrahim A, Ganguly R, Yu L, Dodge R, Megaridis C (2018) Precise liquid transport on and through thin porous materials. Langmuir 34(8):2865–2875

    Article  CAS  Google Scholar 

  5. Zang D, Ge L, Yan M, Song X, Yu J (2012) Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem Commun 48(39):4683–4685

    Article  CAS  Google Scholar 

  6. Yan J, Ge L, Song X, Yan M, Ge S, Yu J (2012) Paper-based Electrochemiluminescent 3D Immunodevice for lab-on-paper, specific, and sensitive point-of-care testing. Chem Eur J 18(16):4938–4945

    Article  CAS  Google Scholar 

  7. Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Edit 51(49):12215–12218

    Article  CAS  Google Scholar 

  8. Jiang J, He Y, Li S, Cui H (2012) Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun 48(77):9634–9636

    Article  CAS  Google Scholar 

  9. Zhang J, Chen X, Li Y, Han S, Du Y, Liu H (2018) A nitrogen doped carbon quantum dot-enhanced chemiluminescence method for the determination of Mn2+. Anal Methods 10(5):541–547

    Article  CAS  Google Scholar 

  10. Zhou L, Lin Y, Huang Z, Ren J, Qu X (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48(8):1147–1149

    Article  CAS  Google Scholar 

  11. Sha Y, Lou J, Bai S, Wu D, Liu B, Ling Y (2013) Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper (II) ions. Mater Res Bull 48(4):1728–1731

    Article  CAS  Google Scholar 

  12. Qu K, Wang J, Ren J, Qu X (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem Eur J 19(22):7243–7249

    Article  CAS  Google Scholar 

  13. Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK (2017) Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sensors Actuators B Chem 242:679–686

    Article  CAS  Google Scholar 

  14. Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH (2014) Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine. Microchim Acta 181(5):671–677

    Article  CAS  Google Scholar 

  15. Zuo P, Lu X, Sun Z, Guo Y, He HJ (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542

    Article  CAS  Google Scholar 

  16. Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  17. Oliveira H (2012). Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012

  18. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Article  CAS  Google Scholar 

  19. Nriagu JO (1988) Production and uses of chromium. Chromium in the natural human environments 20:81–104

  20. Williams C, David DJ, Iismaa OJT (1962) The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J Agric Sci 59(3):381–385

    Article  CAS  Google Scholar 

  21. Sperling M, Xu S, Welz B (1992) Determination of chromium (III) and chromium (VI) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Anal Chem 64(24):3101–3108

    Article  CAS  Google Scholar 

  22. Barnowski C, Jakubowski N, Stuewer D, Broekaert JA (1997) Speciation of chromium by direct coupling of ion exchange chromatography with inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 12(10):1155–1161

    Article  CAS  Google Scholar 

  23. Hirata S, Honda K, Shikino O, Maekawa N, Aihara MJSAPBAS (2000) Determination of chromium (III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry. Spectrochim Acta B 55(7):1089–1099

    Article  Google Scholar 

  24. Jung JY, Han SJ, Chun J, Lee C, Yoon J (2012) New thiazolothiazole derivatives as fluorescent chemosensors for Cr3+ and Al3+. Dyes Pigments 94(3):423–426

    Article  CAS  Google Scholar 

  25. Wan Y, Guo Q, Wang X, AJAca X (2010) Photophysical properties of rhodamine isomers: a two-photon excited fluorescent sensor for trivalent chromium cation (Cr3+). Anal Chim Acta 665(2):215–220

    Article  CAS  Google Scholar 

  26. Zhou Y, Zhang J, Zhang L, Zhang Q, Ma T, Niu J (2013) A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media. Dyes Pigments 97(1):148–154

    Article  CAS  Google Scholar 

  27. Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z (2013) On–off–on fluorescent carbon dot nanosensor for recognition of chromium (VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces 5(24):13242–13247

    Article  CAS  Google Scholar 

  28. Hallam PM, Kampouris DK, Kadara RO, Banks CE (2010) Graphite screen printed electrodes for the electrochemical sensing of chromium (VI). Analyst 135(8):1947–1952

    Article  CAS  Google Scholar 

  29. Jena BK, Raj CRJT (2008) Highly sensitive and selective electrochemical detection of sub-ppb level chromium (VI) using nano-sized gold particle. Talanta 76(1):161–165

    Article  CAS  Google Scholar 

  30. Kochmann S, Hirsch T, Wolfbeis OS (2012) The pH dependence of the total fluorescence of graphite oxide. J Fluoresc 22(3):849–855

    Article  CAS  Google Scholar 

  31. Qu S, Chen H, Zheng X, Cao J, Liu X (2013) Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale 5(12):5514–5518

    Article  CAS  Google Scholar 

  32. Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137(2):762–811

    Article  CAS  Google Scholar 

  33. Bu L, Peng J, Peng H, Liu S, Xiao H, Liu D, Pan Z, Chen Y, Chen F, He Y (2016) Fluorescent carbon dots for the sensitive detection of Cr(vi) in aqueous media and their application in test papers. RSC Adv 6(98):95469–95475

    Article  CAS  Google Scholar 

  34. Pacquiao MR, de Luna MDG, Thongsai N, Kladsomboon S, Paoprasert P (2018) Highly fluorescent carbon dots from enokitake mushroom as multi-faceted optical nanomaterials for Cr6+ and VOC detection and imaging applications. Appl Surf Sci 453:192–203

    Article  CAS  Google Scholar 

  35. Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82(5):1727–1732

    Article  CAS  Google Scholar 

  36. Ge L, Wang S, Song X, Ge S, Yu J (2012) 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12(17):3150–3158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Science and Technology of Taiwan under the project number 107-2113-M-003-013-MY3. We thank Yi-Ju Chou for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chien-Fu Chen or Yi-Chun Yeh.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.07 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, KH., Lin, JH., Lin, CY. et al. A fluorometric paper test for chromium(VI) based on the use of N-doped carbon dots. Microchim Acta 186, 227 (2019). https://doi.org/10.1007/s00604-019-3337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3337-5

Keywords

Navigation