Skip to main content
Log in

The UV absorption of graphene oxide is size-dependent: possible calibration pitfalls

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is often quantified via its UV absorption, typically at around 230 nm. This is convenient but the effect of the size of GO on the accuracy of this method has been ignored so far. The authors report that the molar absorbance of GO is size-dependent. Data are presented on the absorbance of small (hydrodynamic diameter 1 μm), medium sized (1.5 μm), and large (2.2 μm) GO particles at wavelengths of 210, 230 and 250 nm. In general, linear relationship and good regression fits are obtained, but with different slope depending on size even at the same wavelength. This implies that using the UV absorption-based calibration may cause significant errors in GO quantification. Ultimately, this leads to incorrect dosages and faulty conclusions. This may also explain a variety of inconsistent results obtained in previous biological applications of GO.

The size of graphene oxide (GO) determines its UV absorption and the UV absorption-based calibration (GO-s, GO-m and GO-l represent the GO with small, medium and large size).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Uzzaman A, Shang Z, Qiao Z, Cao C-X, Xiao H (2018) Graphene and graphene oxide as a solid matrix for extraction of membrane and membrane-associated proteins. Microchim Acta 185(2):123. https://doi.org/10.1007/s00604-017-2658-5

    Article  CAS  Google Scholar 

  2. Liu J, Dong J, Zhang T, Peng Q (2018) Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 286:64–73. https://doi.org/10.1016/j.jconrel.2018.07.034

    Article  CAS  PubMed  Google Scholar 

  3. Hou Y, Sheng K, Lu Y, Ma C, Liu W, Men X, Xu L, Yin S, Dong B, Bai X, Song H (2018) Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Microchim Acta 185(8):397. https://doi.org/10.1007/s00604-018-2925-0

    Article  CAS  Google Scholar 

  4. Yao Y, Liao W, Yu R, Du Y, Zhang T, Peng Q (2018) Potentials of combining nanomaterials and stem cell therapy in myocardial repair. Nanomedicine (Lond) 13(13):1623–1638. https://doi.org/10.2217/nnm-2018-0013

    Article  CAS  Google Scholar 

  5. Liu J, Liang Y, Liang Q, Yan H, Shen J, Wang C, Bai Q (2018) Tunable composites prepared from graphene oxide and zeolitic imidazolate framework-8 for improved selective isolation of hemoglobin. Microchim Acta 185(8):361. https://doi.org/10.1007/s00604-018-2904-5

    Article  CAS  Google Scholar 

  6. Jiang H, Li F-R, Li W, Lu X, Ling K (2018) Multiplexed determination of intracellular messenger RNA by using a graphene oxide nanoprobe modified with target-recognizing fluorescent oligonucleotides. Microchim Acta 185(12):552. https://doi.org/10.1007/s00604-018-3090-1

    Article  CAS  Google Scholar 

  7. Artur Filipe R, Leon N, Neus L, Sourav PM, Bengt F, Cyrill B, Kostas K (2018) A blueprint for the synthesis and characterisation of thin graphene oxide with controlled lateral dimensions for biomedicine. 2D Materials 5(3):035020

  8. Kundu A, Nandi S, Das P, Nandi AK (2015) Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs. ACS Appl Mater Interfaces 7(6):3512–3523. https://doi.org/10.1021/am507110r

    Article  CAS  PubMed  Google Scholar 

  9. Koninti RK, Sengupta A, Gavvala K, Ballav N, Hazra P (2014) Loading of an anti-cancer drug onto graphene oxide and subsequent release to DNA/RNA: a direct optical detection. Nanoscale 6(5):2937–2944. https://doi.org/10.1039/c3nr06081k

    Article  CAS  PubMed  Google Scholar 

  10. Kalluru P, Vankayala R, Chiang CS, Hwang KC (2016) Nano-graphene oxide-mediated in vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials 95:1–10. https://doi.org/10.1016/j.biomaterials.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  11. Thapa RK, Choi JY, Poudel BK, Choi HG, Yong CS, Kim JO (2016) Receptor-targeted, drug-loaded, functionalized graphene oxides for chemotherapy and photothermal therapy. Int J Nanomedicine 11:2799–2813. https://doi.org/10.2147/ijn.s105401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Giulio M, Zappacosta R, Di Lodovico S, Di Campli E, Siani G, Fontana A, Cellini L (2018) Antimicrobial and Antibiofilm efficacy of graphene oxide against chronic wound microorganisms. Antimicrob Agents Chemother 62(7):e00547–e00518. https://doi.org/10.1128/AAC.00547-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R (2013) Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5(9):3867–3874. https://doi.org/10.1021/am4005495

    Article  CAS  PubMed  Google Scholar 

  14. Tymecki L, Pokrzywnicka M, Koncki R (2008) Paired emitter detector diode (PEDD)-based photometry--an alternative approach. Analyst 133(11):1501–1504. https://doi.org/10.1039/b807127f

    Article  CAS  PubMed  Google Scholar 

  15. Lu C, Huang P-JJ, Liu B, Ying Y, Liu J (2016) Comparison of graphene oxide and reduced graphene oxide for DNA adsorption and sensing. Langmuir 32(41):10776–10783. https://doi.org/10.1021/acs.langmuir.6b03032

    Article  CAS  PubMed  Google Scholar 

  16. Wei XQ, Hao LY, Shao XR, Zhang Q, Jia XQ, Zhang ZR, Lin YF, Peng Q (2015) Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration. ACS Appl Mater Interfaces 7(24):13367–13374. https://doi.org/10.1021/acsami.5b01874

    Article  CAS  PubMed  Google Scholar 

  17. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  18. Shao XR, Wei XQ, Zhang S, Fu N, Lin YF, Cai XX, Peng Q (2017) Effects of micro-environmental pH of liposome on chemical stability of loaded drug. Nanoscale Res Lett 12(1):504. https://doi.org/10.1186/s11671-017-2256-9

    Article  CAS  PubMed  Google Scholar 

  19. Zhang TX, Zhu GY, Lu BY, Zhang CL, Peng Q (2017) Concentration-dependent protein adsorption at the nano-bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine (Lond) 12(22):2757–2769. https://doi.org/10.2217/nnm-2017-0238

    Article  CAS  Google Scholar 

  20. Zhu GY, Lu BY, Zhang TX, Zhang T, Zhang CL, Li Y, Peng Q (2018) Antibiofilm effect of drug-free and cationic poly(D,L-lactide-co-glycolide) nanoparticles via nano-bacteria interactions. Nanomedicine (Lond) 13(10):1093–1106. https://doi.org/10.2217/nnm-2017-0391

    Article  CAS  Google Scholar 

  21. Gengler RY, Badali DS, Zhang D, Dimos K, Spyrou K, Gournis D, Miller RJ (2013) Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat Commun 4:2560. https://doi.org/10.1038/ncomms3560

    Article  CAS  PubMed  Google Scholar 

  22. Li F, Li L, Wang W, Gao J (2018) A new facile approach to prepare reduced graphene oxide and MoO2/reduced graphene oxide as electrode materials for oxygen reduction reactions. J Colloid Interface Sci 519:194–202. https://doi.org/10.1016/j.jcis.2017.10.054

    Article  CAS  PubMed  Google Scholar 

  23. Bolibok P, Roszek K, Wiśniewski M (2018) Graphene oxide-mediated protection from Photodamage. J Phys Chem Lett 9(12):3241–3244. https://doi.org/10.1021/acs.jpclett.8b01349

    Article  CAS  PubMed  Google Scholar 

  24. Poudel A, Kim SG, Lamichhane R, Kim YK, Jo HK, Jung HJ (2014) Quantitative assessment of traditional oriental herbal formulation Samhwangsasim-tang using UPLC technique. J Chromatogr Sci 52(2):176–185. https://doi.org/10.1093/chromsci/bmt008

    Article  CAS  PubMed  Google Scholar 

  25. Engelbrecht L, Grobler CJ, Rheeders M (2017) A simple and cost-effective HPLC-UV method for the detection of levetiracetam in plasma/serum of patients with epilepsy. Biomed Chromatogr 31(10). https://doi.org/10.1002/bmc.3969

  26. Khan S, Tubino M, Vila MMDC, Bastos FA (2018) First time determination of important catalyst sodium methoxide used in biodiesel by colorimetric method. Anal Chem 90(5):3550–3555. https://doi.org/10.1021/acs.analchem.7b05445

    Article  CAS  PubMed  Google Scholar 

  27. Coleman BR, Knight T, Gies V, Jakubek ZJ, Zou S (2017) Manipulation and quantification of graphene oxide flake size: photoluminescence and cytotoxicity. ACS Appl Mater Interfaces 9(34):28911–28921. https://doi.org/10.1021/acsami.7b08585

    Article  CAS  PubMed  Google Scholar 

  28. Reina G, Chau NDQ, Nishina Y, Bianco A (2018) Graphene oxide size and oxidation degree govern its supramolecular interactions with siRNA. Nanoscale 10(13):5965–5974. https://doi.org/10.1039/c8nr00333e

    Article  CAS  PubMed  Google Scholar 

  29. Esmaeili A, Entezari MH (2014) Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation. J Colloid Interface Sci 432:19–25. https://doi.org/10.1016/j.jcis.2014.06.055

    Article  CAS  PubMed  Google Scholar 

  30. Muthoosamy K, Manickam S (2017) State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrason Sonochem 39:478–493. https://doi.org/10.1016/j.ultsonch.2017.05.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 81402860 and 81700538), Huohuaku Foundation of Sichuan University (No. 2018SCUH0083) and the Excellent Young Scientist Foundation of Sichuan University (No. 2016SCU04A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Peng.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1877 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhu, GY., Yu, CH. et al. The UV absorption of graphene oxide is size-dependent: possible calibration pitfalls. Microchim Acta 186, 207 (2019). https://doi.org/10.1007/s00604-019-3329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3329-5

Keywords

Navigation