Skip to main content

Advertisement

Log in

An aptamer-based four-color fluorometic method for simultaneous determination and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The extraordinary fluorescence quenching capability of graphene oxide (GO) was coupled to the specific recognition capability of aptamers to design a four-color fluorescent nanoprobe for multiplexed detection and imaging of tumor-associated proteins in living cells. Specifically, alpha-fetoprotein (AFP), vascular endothelial growth factor-165 (VEGF165), carcinoembryonic antigen (CEA), and human epidermal growth factor receptor 2 (HER2) were detected. Due to strong π interaction, the fluorescence of labeled aptamers is quenched by GO. Four fluorophore-labeled aptamers that bind the tumor-associated proteins were adsorbed on GO to form the four-color nanoprobe with quenched fluorescence. The nanoprobes were internalized into cells via endocytosis, where the aptamer/GO nanoprobes bind the intracellular tumor-associated proteins. The aptamer-protein complexes thus formed detach from GO, and fluorescence recovers. Each analyte has its typical color (AFP: blue; VEGF165: green; CEA: yellow; HER2: red). As a result, simultaneous detection and imaging of multiple tumor-associated proteins in living cells were achieved. This nanoprobe has a fast response and is highly specific and biocompatible. The linear ranges for AFP, VEGF165, CEA, and HER2 are 0.8 nM–160 nM, 0.5 nM–100 nM, 1.0 nM–200 nM, and 1.2 nM–240 nM, respectively. Detection limits were 0.45 nM for AFP, 0.30 nM for VEGF165, 0.62 nM for CEA, and 0.96 nM for HER2. The probe allows for a fast distinction between tumor cells and normal cells via imaging.

Schematic presentation of the development of a four-color fluorometic method based on aptamer and graphene oxide for simultaneous detection and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561

    Article  CAS  Google Scholar 

  2. Fu X, Chen L, Choo J (2017) Optical nanoprobes for ultrasensitive immunoassay. Anal Chem 89:124–137

    Article  CAS  Google Scholar 

  3. Xu H, Li Q, Wang L, He Y, Shi J, Tang B, Fan C (2014) Nanoscale optical probes for cellular imaging. Chem Soc Rev 43:2650–2661

    Article  CAS  Google Scholar 

  4. Huang D, Huang Z, Xiao H, Wu Z, Tang L, Jiang J (2018) Protein scaffolded DNA tetrads enable efficient delivery and ultrasensitive imaging of miRNA through crosslinking hybridization chain reaction. Chem Sci 9:4892–4897

    Article  CAS  Google Scholar 

  5. Pan W, Zhang T, Yang H, Diao W, Li N, Tang B (2013) Multiplexed detection and imaging of intracellular mRNAs using a four-color nanoprobe. Anal Chem 85:10581–10588

    Article  CAS  Google Scholar 

  6. Borra R, Dong D, Elnagar AY, Woldemariam GA, Camarero JA (2012) In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J Am Chem Soc 134:6344–6353

    Article  CAS  Google Scholar 

  7. Ji H, Guan Y, Wu L, Ren J, Miyoshi D, Sugimoto N, Qu X (2015) A fluorescent probe for detection of an intracellular prognostic indicator in early-stage cancer. Chem Commun 51:1479–1482

    Article  CAS  Google Scholar 

  8. Liang H, Chen S, Li P, Wang L, Li J, Li J, Yang H, Tan W (2018) Nongenetic approach for imaging protein dimerization by aptamer recognition and proximity-induced DNA assembly. J Am Chem Soc 140:4186–4190

    Article  CAS  Google Scholar 

  9. Liu Y, Zhang X, Chen W, Tan YL, Kelly JW (2015) Fluorescence turn-on folding sensor to monitor proteome stress in live cells. J Am Chem Soc 137:11303–11311

    Article  CAS  Google Scholar 

  10. Mizusawa K, Takaoka Y, Hamachi I (2012) Specific cell surface protein imaging by extended self-assembling fluorescent turn-on nanoprobes. J Am Chem Soc 134:13386–13395

    Article  CAS  Google Scholar 

  11. Tang Y, Wang Z, Yang X, Chen J, Liu L, Zhao W, Le XC, Li F (2015) Constructing real-time, wash-free, and reiterative sensors for cell surface proteins using binding-induced dynamic DNA assembly. Chem Sci 6:5729–5733

    Article  CAS  Google Scholar 

  12. Wu B, Wang H, Chen J, Yan X (2011) Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J Am Chem Soc 133:686–688

    Article  CAS  Google Scholar 

  13. Yoshii T, Mizusawa K, Takaoka Y, Hamachi I (2014) Intracellular protein-responsive supramolecules: protein sensing and in-cell construction of inhibitor assay system. J Am Chem Soc 136:16635–16642

    Article  CAS  Google Scholar 

  14. Yu W, Wu T, Huang C, Chen I, Tan K (2016) Protein sensing in living cells by molecular rotor-based fluorescence-switchable chemical probes. Chem Sci 7:301–307

    Article  CAS  Google Scholar 

  15. Zhao B, Wu P, Zhang H, Cai C (2015) Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens Bioelectron 68:763–770

    Article  CAS  Google Scholar 

  16. Wu Z, Liu G, Yang X, Jiang J (2015) Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J Am Chem Soc 137:6829–6836

    Article  CAS  Google Scholar 

  17. Li N, Chang C, Pan W, Tang B (2012) A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew Chem Int Ed 51:7426–7430

    Article  CAS  Google Scholar 

  18. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  CAS  Google Scholar 

  19. Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315

    Article  CAS  Google Scholar 

  20. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346

    Article  CAS  Google Scholar 

  21. Lu C, Li J, Lin M, Wang Y, Yang H, Chen X, Chen G (2010) Amplified aptamer-based assay through catalytic recycling of the analyte. Angew Chem Int Ed 49:8454–8457

    Article  CAS  Google Scholar 

  22. Dong H, Zhang J, Ju H, Lu H, Wang S, Jin S, Hao K, Du H, Zhang X (2012) Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal Chem 84:4587–4593

    Article  CAS  Google Scholar 

  23. Pan W, Liu B, Gao X, Yu Z, Liu X, Li N, Tang B (2018) A graphene-based fluorescent nanoprobe for simultaneous monitoring of miRNA and mRNA in living cells. Nanoscale 10:14264–14271

    Article  CAS  Google Scholar 

  24. Ryoo SR, Lee J, Yeo J, Na HK, Kim YK, Jang H, Lee JH, Han SW, Lee Y, Kim VN, Min DH (2013) Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO). ACS Nano 7:5882–5891

    Article  CAS  Google Scholar 

  25. Liu H, Tian T, Ji D, Ren N, Ge S, Yan M, Yu J (2016) A graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells. Biosens Bioelectron 85:909–914

    Article  CAS  Google Scholar 

  26. Li L, Feng J, Liu H, Li Q, Tong L, Tang B (2016) Two-color imaging of microRNA with enzyme-free signal amplification via hybridization chain reactions in living cells. Chem Sci 7:1940–1945

    Article  CAS  Google Scholar 

  27. Yang L, Liu B, Wang M, Li J, Pan W, Gao X, Li N, Tang B (2018) A highly sensitive strategy for fluorescence imaging of microRNA in living cells and in vivo based on graphene oxide-enhanced signal molecules quenching of molecular beacon. ACS Appl Mater Interfaces 10:6982–6990

    Article  CAS  Google Scholar 

  28. Shao C, Liang J, He S, Luan T, Yu J, Zhao H, Xu J, Tian L (2017) pH-responsive graphene oxide-DNA nanosystem for live cell imaging and detection. Anal Chem 89:5445–5452

    Article  CAS  Google Scholar 

  29. Yang L, Li J, Pan W, Wang H, Li N, Tang B (2018) Fluorescence and photoacoustic dual-mode imaging of tumor-related mRNA with a covalent linkage-based DNA nanoprobe. Chem Commun 54:3656–3659

    Article  CAS  Google Scholar 

  30. Wang Y, Li Z, Weber TJ, Hu D, Lin CT, Li J, Lin Y (2013) In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal Chem 85:6775–6782

    Article  CAS  Google Scholar 

  31. Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276

    Article  CAS  Google Scholar 

  32. Yi M, Yang S, Peng Z, Liu C, Li J, Zhong W, Yang R, Tan W (2014) Two-photon graphene oxide/aptamer nanosensing conjugate for in vitro or in vivo molecular probing. Anal Chem 86:3548–3554

    Article  CAS  Google Scholar 

  33. Chen T, Tian X, Liu C, Ge J, Chu X, Li Y (2015) Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor. J Am Chem Soc 137:982–989

    Article  CAS  Google Scholar 

  34. Wang H, Zhang Q, Chu X, Chen T, Ge T, Yu R (2011) Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew Chem Int Ed 123:7203–7207

    Article  Google Scholar 

  35. Tian J, Ding L, Wang Q, Hu Y, Jia L, Yu J, Ju H (2015) Folate receptor-targeted and cathepsin B-activatable nanoprobe for in situ therapeutic monitoring of photosensitive cell death. Anal Chem 87:3841–3848

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundations of China (No. 21864005, 81460544) and the Natural Science Foundations of Guangxi Province (No. 2015GXNSFGA139003) as well as BAGUI Scholar Program and the project of State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2015-A08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Huang, Shulin Zhao or Hong Liang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 4681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Chen, W., Shi, M. et al. An aptamer-based four-color fluorometic method for simultaneous determination and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells. Microchim Acta 186, 204 (2019). https://doi.org/10.1007/s00604-019-3312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3312-1

Keywords

Navigation