Skip to main content
Log in

Colorimetric and visual determination of ultratrace uranium concentrations based on the aggregation of amidoxime functionalized gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the synthesis and characterization of 3-mercaptopropionylamidoxime functionalized gold nanoparticles (AuNPs) for visual detection of uranium (U) by cloud point extraction. The method is capable of quantifying U at the concentration limits set by the World Health Organization in drinking water i.e., 30.0 ng mL−1. The method is based on the gradual color change from red to blue that occurs as a result of the interaction between uranyl ion and the modified AuNPs leading to particle aggregation. Such analyte-triggered aggregation results in AuNP’s peak absorbance quenching as well as red shift in the wavelength range of 520 to 543 nm. The colorimetric response at 520 nm is linear in the 2–100 ng mL−1 U concentration range, and the limit of detection is 0.3 ng mL−1. No interferences by other ions are found, and the relative standard deviation is ≤4% (for n = 5). The method is validated by analyzing a certified reference material (NIST SRM 1640a; natural water), and also applied to the quantification of U in four (spiked) water samples.

Schematic presentation of cloud point extraction (CPE) assisted coloirmetric and visual detection of uranium (U). In CPE of gold nanoparticles (AuNPs) the color of surfactant rich phase (SRP) turns red in absence of U(VI) and blue in presence of U(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang C-T, Han J, Gu M, Liu J, Li Y, Huang Z, Yu H-Z, Hu S, Wang X (2015) Fluorescent recognition of uranyl ions by a phosphorylated cyclic peptide. Chem Commun 51:11769–11772

    Article  CAS  Google Scholar 

  2. Labrecque C, Potvin S, Whitty-Léveillé L, Larivièr D (2013) Cloud point extraction of uranium using H2DEH[MDP] in acidic conditions. Talanta 107:284–291

    Article  CAS  Google Scholar 

  3. Saha A, Sanyal K, Rawat N, Deb SB, Saxena MK, Tomar BS (2017) Selective micellar extraction of Ultratrace levels of uranium in aqueous samples by task specific ionic liquid followed by its detection employing Total reflection X-ray fluorescence spectrometry. Anal Chem 89:10422–10430

    Article  CAS  Google Scholar 

  4. Dutta RK, Kumar A (2016) Highly sensitive and selective method for detecting ultratrace levels of aqueous uranyl ions by strongly photoluminescent-responsive amine-modified cadmium sulfide quantum dots. Anal Chem 88:9071–9078

    Article  CAS  Google Scholar 

  5. Rathore DPS (2008) Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77:9–20

    Article  CAS  Google Scholar 

  6. WHO (2011) Guidelines for drinking-water quality, 4th edn, Geneva

  7. Common radionuclides found at superfund sites, EPA facts about uranium (2002) Environmental Protection Agency. In: US

    Google Scholar 

  8. AERB (2004) Drinking water specifications in India, Department of Atomic Energy, Govt. of India

  9. Lorber A, Karpas Z, Halicz L (1996) Flow injection method for determination of uranium in urine and serum by inductively coupled plasma mass spectrometry. Anal Chim Acta 334:295–301

    Article  CAS  Google Scholar 

  10. Misra NL, Dhara S, Singh Mudher KD (2006) Uranium determination in seawater by total reflection X-ray fluorescence spectrometry. Spectrochim Acta Part B 61:1166–1169

    Article  Google Scholar 

  11. de Souza AL, Cotrim MEB, Pires MAF (2013) An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade. Microchim J 106:194–201

    Article  Google Scholar 

  12. Brina R, Miller AG (1992) Direct detection of trace levels of uranium by laser-induced kinetic phosphorimetry. Anal Chem 64:1413–1418

    Article  CAS  Google Scholar 

  13. Gwak R, Kim H, Yoo SM, Lee SY, Lee G-J, Lee M-K, Rhee C-K, Kang T, Kim B (2016) Precisely determining ultralow level UO2(2+) in natural water with Plasmonic nanowire interstice sensor. Sci Rep 6:19646

    Article  CAS  Google Scholar 

  14. Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29:203002

    Article  Google Scholar 

  15. Pezzato C, Maiti S, Chen JL-Y, Cazzolaro A, Gobbo C, Prins LJ (2015) Monolayer protected gold nanoparticles with metal-ion binding sites: functional systems for chemosensing applications. Chem Commun 51:9922–9931

    Article  CAS  Google Scholar 

  16. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  17. Zhang D, Chen Z, Omar H, Deng L, Khashab NM (2015) Colorimetric peroxidase mimetic assay for uranyl detection in sea water. ACS Appl Mater Interfaces 7:4589–4594

    Article  CAS  Google Scholar 

  18. Zhang H, Lin L, Zeng X, Ruan Y, Wu Y, Lin M, He Y, Fu F (2016) Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment. Biosens Bioelectron 78:73–79

    Article  CAS  Google Scholar 

  19. Saha A, Debnath T, Neogy S, Ghosh HN, Saxena MK, Tomar BS (2017) Micellar extraction assisted fluorometric determination of ultratrace amount of uranium in aqueous samples by novel diglycolamide-capped quantum dot nanosensor. Sensors Actuators B 253:592–602

    Article  CAS  Google Scholar 

  20. Ojeda CB, Rojas FS (2012) Separation and preconcentration by cloud point extraction procedures for determination of ions: recent trends and applications. Microchim Acta 177:1–21

    Article  CAS  Google Scholar 

  21. Saha A, Deb SB, Sarkar A, Saxena MK, Tomar BS (2016) Simultaneous preconcentration of uranium and thorium in aqueous samples using cloud point extraction. RSC Adv 6:20109–20119

    Article  CAS  Google Scholar 

  22. Nair PR, Xavier M, Aggarwal SK (2009) A robost biamperometric titration methodology for the determination of uranium by Ti(III) reduction in presence of plutonium. Radiochim Acta 97:419–422

    Article  CAS  Google Scholar 

  23. Castillo-López DN, Pal U (2014) Green synthesis of au nanoparticles using potato extract: stability and growth mechanism. J Nanopart Res 16:2571

    Article  Google Scholar 

  24. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy – a reference book of standard data for use in X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, USA

    Google Scholar 

  25. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B 58:3–7

    Article  CAS  Google Scholar 

  26. Zhang A, Asakura T, Uchiyama G (2003) The adsorption mechanism of uranium (VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React Funct Polym 57:67–76

    Article  CAS  Google Scholar 

  27. Kim J, Tsouris C, Oyola Y, Janke CJ, Mayes RT, Dai S, Gill G, Kuo L-J, Wood J, Choe K-Y, Schneider E, Lindner H (2014) Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind Eng Chem Res 53:6076–6083

    Article  CAS  Google Scholar 

  28. Kavakli PA, Seko N, Tamada M, Güven O (2004) A highly efficient chelating polymer for the adsorption of uranyl and vanadyl ions at low concentrations. Adsorption 10:309–315

    Article  CAS  Google Scholar 

  29. Mehio N, Lashely MA, Nugent JW, Tucker L, Correia B, Do-Thanh C-L, Dai S, Hancock RD, Bryantsev VS (2015) Acidity of the amidoxime functional group in aqueous solution: a combined experimental and computational study. J Phys Chem B 119:3567–3576

    Article  CAS  Google Scholar 

  30. Ugur I, Marion A, Parant S, Jensen JH, Monard G (2014) Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKa’s. J Chem Inf Model 54:2200–2213

    Article  CAS  Google Scholar 

  31. J-f L, Liu R, Y-g Y, G-b J (2009) Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase. Chem Commun:1514–1516

  32. Tan Z-Q, Liu J-F, Liu R, Yin Y-G, Jiang G-B (2009) Visual and colorometric detection of Hg2+ by cloud point extraction with functionalized gold nanoparticles as a probe. Chem Commun:7030–7032

  33. Schweitzer GK, Pesterfield LL (2010) The aqueous chemistry of the elements. Oxford University Press, New York

    Google Scholar 

  34. Orabi AH (2013) Determination of uranium after using solvent extraction from slightly nitric acid solution and spectrophotometric detection. J Radiat Res Appl Sci 6:1–10

    Article  CAS  Google Scholar 

  35. Bajwa BS, Kumar S, Singh S, Sahoo SK, Tripathi RM (2017) Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India. J Radiat Res Appl Sci 10:13–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. B.G. Vats, FCD, BARC and Dr. R. Chowdhury, BOD, BARC for their constant help throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Saha.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Neogy, S., Rao, D.R.M. et al. Colorimetric and visual determination of ultratrace uranium concentrations based on the aggregation of amidoxime functionalized gold nanoparticles. Microchim Acta 186, 183 (2019). https://doi.org/10.1007/s00604-019-3292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3292-1

Keywords

Navigation