Skip to main content
Log in

An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Two kinds of electrochemical impedimetric biosensors for the detection of E. coli O157:H7 are described and compared. They were fabricated using self-assembled layers of thiolated protein G (PrG-thiol) on (i) planar gold electrodes and (ii) gold nanoparticles (Au NPs) modified gold electrodes. The fabrications of the biosensors were characterized using cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy and atomic force microscopy techniques. The modification of the planar gold electrode by Au NPs via self-assembled monolayer of 1,6-hexadithiol as a linker molecule increased the electrochemically active surface area by about 2.2 times. The concentration of PrG-thiol and its incubation time, as well as the concentration of IgG were optimized. The Au NP-based biosensor exhibited a limit of detection of 48 colony forming unit (cfu mL−1) which is 3 times lower than that of the planar gold electrode biosensor (140 cfu mL−1). It also showed a wider dynamic range (up to 107 cfu mL−1) and sensitivity. The improved analytical performance of the Au NP-modified biosensor is ascribed to the synergistic effect between the Au NPs and the PrG-thiol scaffold. The biosensor exhibited high selectivity for E. coli O157:H7 over other bacteria such as Staphylococcus aureus and Salmonella typhimurium.

Schematic representations of sensor fabrication using Au NP-modified electrode (HKEC = heat- killed E. coli O157:H7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J, Angulo FJ, Yeung DH, Kirk MD (2014) Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog Dis 11:447–455

    Article  Google Scholar 

  2. Tokarskyy O, Marshall DL (2008) Immunosensors for rapid detection of Escherichia coli O157:H7 — perspectives for use in the meat processing industry. Food Microbiol 25:1–12

    Article  CAS  Google Scholar 

  3. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  CAS  Google Scholar 

  4. Mayer CL, Leibowitz CS, Kurosawa S, Stearns-Kurosawa DJ (2012) Shiga toxins and the pathophysiology of hemolytic uremic syndrome in humans and animals. Toxins 4:1261–1287

    Article  CAS  Google Scholar 

  5. Fung F, Wang H-S, Menon S (2018) Food safety in the 21st century. Biom J 41:88–95

    Google Scholar 

  6. Varadi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, Groundwater PW (2017) Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev 46:4818–4832

    Article  CAS  Google Scholar 

  7. Amiri M, Bezaatpour M, Jafari H, Boukherroub R, Szunerits S (2018) Electrochemical methodologies for the detection of pathogens. ACS Sensors 3:1069–1086

    Article  CAS  Google Scholar 

  8. Chen Y, Wang Z, Liu Y, Wang X, Li Y, Ma P, Gu B, Li H (2014) Recent advances in rapid pathogen detection method based on biosensors. Eur J Clin Microbiol Infect Dis 37:1021–1037

    Article  Google Scholar 

  9. Yoo SM, Lee SY (2016) Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol 34:7–25

    Article  CAS  Google Scholar 

  10. Dong Z-M, Zhao G-C (2015) Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides. Talanta 137:55–61

    Article  CAS  Google Scholar 

  11. Xu M, Wang R, Li Y (2017) Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 162:511–522

    Article  CAS  Google Scholar 

  12. Heo J, Hua SZ (2009) An overview of recent strategies in pathogen sensing. Sensors 9:4483–4502

    Article  CAS  Google Scholar 

  13. Chang B-Y, Park S-M (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229

    Article  CAS  Google Scholar 

  14. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249

    Article  CAS  Google Scholar 

  15. Tran TB, Son SJ, Min J (2016) Nanomaterials in label-free impedimetric biosensor: current process and future perspectives. BioChip J 10:318–330

    Article  CAS  Google Scholar 

  16. Lin D, Harris KD, Chan NWC, Jemere AB (2018) Nanostructured indium tin oxide electrodes immobilized with toll-like receptor proteins for label-free electrochemical detection of pathogen markers. Sensors Actuators B Chem 257:324–330

    Article  CAS  Google Scholar 

  17. Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849–2866

    Article  CAS  Google Scholar 

  18. Lin D, Tang T, Harrison DJ, Lee WE, Jemere AB (2015) A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus. Biosens Bioelectron 68:129–134

    Article  CAS  Google Scholar 

  19. Zhang J, Wang J, Zhu J, Xu J, Chen H, Xu D (2008) An electrochemical impedimetric arrayed immunosensor based on indium tin oxide electrodes and silver-enhanced gold nanoparticles. Microchim Acta 163:63–70

    Article  CAS  Google Scholar 

  20. Zhou J, Du L, Zou L, Zou Y, Hu N, Wang P (2014) An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A—au nanoparticle modified gold electrode. Sensors Actuators B Chem 197:220–227

    Article  CAS  Google Scholar 

  21. Wang Y, Ping J, Ye Z, Wu J, Ying Y (2013) Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosens Bioelectron 49:492–498

    Article  CAS  Google Scholar 

  22. Yang H, Zhou H, Hao H, Gong Q, Nie K (2016) Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sensors Actuators B Chem 229:297–304

    Article  CAS  Google Scholar 

  23. Geng P, Zhang X, Meng W, Wang Q, Zhang W, Jin L, Feng Z, Wu Z (2008) Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy. Electrochim Acta 53:4663–4668

    Article  CAS  Google Scholar 

  24. Ruan C, Yang L, Li Y (2002) Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal Chem 74:4814–4820

    Article  CAS  Google Scholar 

  25. Maalouf R, Fournier-Wirth C, Coste J, Chebib H, Saikali Y, Vittori O, Errachid A, Cloarec J-P, Martelet C, Jaffrezic-Renault N (2007) Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance. Anal Chem 79:4879–4886

    Article  CAS  Google Scholar 

  26. dos Santos MB, Agusil JP, Prieto-Simon B, Sporer C, Teixeria V, Samitier J (2013) Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens Bioelectron 45:174–180

    Article  Google Scholar 

  27. dos Santos MB, Azevedo S, Agusil JP, Prieto-Simon B, Sporer C, Torrents E, Juarez A, Teixeira V, Samitier J (2015) Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochem 101:146–152

    Article  Google Scholar 

  28. Joung C-K, Nim H-N, Lim M-C, Jeon T-J, Kim H-Y, Kim YR (2013) A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk. Biosens Bioelectron 44:210–215

    Article  CAS  Google Scholar 

  29. Fowler JM, Stuart MC, Wong DKY (2007) Self-assembled layer of thiolated protein G as an Immunosensor scaffold. Anal Chem 79:350–354

    Article  CAS  Google Scholar 

  30. Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A (2010) Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal Chem 82:6401–6408

    Article  CAS  Google Scholar 

  31. Makaraviciute A, Ramanaviciene A (2013) Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 50:460–471

    Article  CAS  Google Scholar 

  32. Trilling AK, Beekwilder J, Zuilhof H (2013) Antibody orientation on biosensor surfaces: a minireview. Analyst 138:1619–1627

    Article  CAS  Google Scholar 

  33. Liu Y, Yu J (2016) Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchim Acta 183:1–19

    Article  CAS  Google Scholar 

  34. Turkova J (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatogr B Biomed Sci Appl 722:11–31

    Article  CAS  Google Scholar 

  35. Hafaiedh I, Chammem H, Abdelghani A, Ait E, Feldman L, Meilhac O, Mora L (2013) Supported protein G on gold electrode: characterization and immunosensor application. Talanta 116:84–90

    Article  CAS  Google Scholar 

  36. Mahmoud AM, Tang T, Harrison DJ, Lee WE, Jemere AB (2014) A regenerating self-assembled gold nanoparticle-containing electrochemical impedance sensor. Biosens Bioelectron 56:328–333

    Article  CAS  Google Scholar 

  37. Sun X, Zhu Y, Wang X (2011) Amperometric immunosensor based on a protein A/deposited gold nanocrystals modified electrode for carbofuran detection. Sensors 11:11679–11691

    Article  CAS  Google Scholar 

  38. Janek RP, Fawcett WR (1998) Impedance spectroscopy of self-assembled monolayers on Au (111): sodium ferrocyanide charge transfer at modified electrode. Langmuir 14:3011–3018

    Article  CAS  Google Scholar 

  39. Shein JB, Lai LMH, Eggers PK, Paddon-Row MN, Gooding JJ (2009) Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25:11121–11128

    Article  CAS  Google Scholar 

  40. Adams KL, Jena BK, Percival SJ, Zhang B (2011) Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode. Anal Chem 83:920–927

    Article  CAS  Google Scholar 

  41. Bertok T, Sediva A, Vikartovska A, Tkac J (2014) Comparison of the 2D and 3D nanostructured lectin-based biosensors for in situ detection of sialic acid on glycoproteins. Int J Electrochem Sci 9:890–900

    PubMed  PubMed Central  Google Scholar 

  42. Baccar H, Mejri MB, Hafaiedh I, Ktari T, Aouni M, Abdelghani A (2010) Surface plasmon resonance immunosensor for bacteria detection. Talanta 82:810–814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the NRC-Nanotechnology Research Centre, Defence Research and Development Canada – Suffield Research Centre, and Defence Research and Development Canada Technology Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abebaw B. Jemere.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 1.15 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Pillai, R.G., Lee, W.E. et al. An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G. Microchim Acta 186, 169 (2019). https://doi.org/10.1007/s00604-019-3282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3282-3

Keywords

Navigation