Skip to main content
Log in

A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorescent nanoprobe is designed for the determination of carbamazepine (CBZ) in exhaled breath condensate (EBC) of patients receiving CBZ. The probe consists of copper nanoclusters (Cu NCs) coated with cetyl trimethylammonium bromide. The interaction of probe with CBZ results in blocking non-radiative e/h+ recombination defect sites on the surface of Cu NCs and consequently enhancing the blue-green fluorescence of Cu NCs (excitation/emission wavelengths: 290/480 nm). The experimental conditions were optimized using a response surface methodology (central composite design). Under the optimized conditions, the calibration plot is linear in the 0.2 to 20 μg mL−1 CBZ concentration range and the detection limit is as low as 0.08 μg mL−1. The intra-day and inter-day relative standard deviations for six replicated measurements of 10 μg mL−1 CBZ are 3.9% and 4.8%, respectively. The method was applied for the determination of CBZ level in EBC of patients receiving CBZ. The accuracy of the method was confirmed by HPLC-UV analysis as a reference method.

Schematic presentation of cetyl trimethylammonium bromide coated copper nanocluster's response to carbamazepine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duche P, Loiseau B (1995) Antiepileptic Drugs. In: Levy RH, Mattson RH, Meldrum BS, Penry JK, Dreyfuss FE (Eds.) 4th edn. Raven Press, New York, pp 555–560

  2. Breton H, Cociglio M, Bressolle F, Peyriere H, Blayac JP, Hillaire-Buys D (2005) Liquid chromatography–electrospray mass spectrometry determination of carbamazepine, oxcarbazepine and eight of their metabolites in human plasma. J Chromatogr B 828:80–90

    Article  CAS  Google Scholar 

  3. Deeb S, McKeown DA, Torrance HJ, Wylie FM, Logan BK, Scott KS (2014) Simultaneous analysis of 22 antiepileptic drugs in postmortem blood, serum and plasma using LC–MS-MS with a focus on their role in forensic cases. J Anal Toxicol 38:485–494

    Article  CAS  Google Scholar 

  4. Kalhor H, Hashemipour S, Yaftian MR, Shahdousti P (2016) Determination of carbamazepine in formulation samples using dispersive liquid–liquid microextraction method followed by ion mobility spectrometry. Int J Ion Mobil Spectrom 19:51–56

    Article  CAS  Google Scholar 

  5. Lin Y-Y, Wang C-C, Ho Y-H, Chen C-S, Wu S-M (2013) Analysis of carbamazepine and its five metabolites in serum by large-volume sample stacking–sweeping capillary electrophoresis. Anal Bioanal Chem 405:259–266

    Article  CAS  Google Scholar 

  6. Ferreira A, Rodrigues M, Oliveira P, Francisco J, Fortuna A, Rosado L, Rosado P, Falcão A, Alves G (2014) Liquid chromatographic assay based on microextraction by packed sorbent for therapeutic drug monitoring of carbamazepine, lamotrigine, oxcarbazepine, phenobarbital, phenytoin and the active metabolites carbamazepine-10, 11-epoxide and licarbazepine. J Chromatogr B 971:20–29

    Article  CAS  Google Scholar 

  7. Qu L, Fan Y, Wang W, Ma K, Yin Z (2016) Development, validation and clinical application of an online-SPE-LC-HRMS/MS for simultaneous quantification of phenobarbital, phenytoin, carbamazepine, and its active metabolite carbamazepine 10, 11-epoxide. Talanta 158:77–88

    Article  CAS  Google Scholar 

  8. Burke J, Thenot J (1985) Determination of antiepileptic drugs. J Chromatogr B 340:199–241

    Article  CAS  Google Scholar 

  9. Wang Y, Yan B, Chen L (2012) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113:1391–1428

    Article  Google Scholar 

  10. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    Article  CAS  Google Scholar 

  11. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  CAS  Google Scholar 

  12. Ma Y, Song Y, Ma Y, Wei F, Xu G, Cen Y, Shi M, Xu X, Hu Q (2018) N-doped carbon dots as a fluorescent probe for the sensitive and facile detection of carbamazepine based on the inner filter effect. New J Chem 42:8992–8997

    Article  CAS  Google Scholar 

  13. Khoubnasabjafari M, Rahimpour E, Jouyban A (2018) Exhaled breath condensate as an alternative sample for drug monitoring. Bioanalysis 10:61–64

    Article  CAS  Google Scholar 

  14. Hunt J (2002) Exhaled breath condensate: an evolving tool for noninvasive evaluation of lung disease. J Allergy Clin Immunol 110:28–34

    Article  Google Scholar 

  15. Chow S, Yates D, Thomas P (2008) Reproducibility of exhaled breath condensate markers. Eur Respir J 32:1124–1126

    Article  CAS  Google Scholar 

  16. De Paiva MJN, Menezes HC, De Lourdes Cardeal Z (2014) Sampling and analysis of metabolomes in biological fluids. Analyst 139:3683–3694

    Article  Google Scholar 

  17. Effros RM, Biller J, Foss B, Hoagland K, Dunning MB, Castillo D, Bosbous M, Sun F, Shaker R (2003) A simple method for estimating respiratory solute dilution in exhaled breath condensates. Am J Respir Crit Care Med 168:1500–1505

    Article  Google Scholar 

  18. Khoubnasabjafari M, Ansarin K, Jouyban-Gharamaleki V, Panahi-Azar V, Hamidi S, Azarmir Z, Jouyban A (2017) Methadone concentrations in exhaled breath condensate, serum and urine of patients under maintenance treatment. Iran. J Pharm Res 16:1621–1630

    CAS  Google Scholar 

  19. Jouyban A, Samadi A, Khoubnasabjafari M, Jouyban-Gharamaleki V, Ranjbar F (2017) Amidosulfonic acid-capped silver nanoparticles for the spectrophotometric determination of lamotrigine in exhaled breath condensate. Microchim Acta 184:2991–2998

    Article  CAS  Google Scholar 

  20. Mohamadian E, Shayanfar A, Khoubnasabjafari M, Jouyban-Gharamaleki V, Ghaffary S, Jouyban A (2017) Analysis of deferiprone in exhaled breath condensate using silver nanoparticle-enhanced terbium fluorescence. Anal Methods 9:5640–5645

    Article  CAS  Google Scholar 

  21. Ghosh SK, Rahman DS, Ali AL, Kalita A (2013) Surface plasmon tunability and emission sensitivity of ultrasmall fluorescent copper nanoclusters. Plasmonics 8:1457–1468

    Article  CAS  Google Scholar 

  22. Jouyban A, Khoubnasabjafari M, Ansarin K, Jouyban-Gharamaleki V (2013) Breath sampling setup. Iranian Patent:81363

  23. Karami-Bonari AR, Tamizi E, Samini M, Jabbaribar F, Jouyban A (2009) HPLC method for simultaneous determination of five antiepileptic drugs in rat plasma. Asian J Chem 21(8):6501–6507

    CAS  Google Scholar 

  24. Qu S, Chen H, Zheng X, Cao J, Liu X (2013) Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale 5:5514–5518

    Article  CAS  Google Scholar 

  25. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  Google Scholar 

  26. Weller H (1993) Colloidal semiconductor q-particles: chemistry in the transition region between solid state and molecules. Angew Chem Int Ed Engl 32:41–53

    Article  Google Scholar 

  27. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  28. Isarov AV, Chrysochoos J (1997) Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper (II) ions. Langmuir 13:3142–3149

    Article  CAS  Google Scholar 

  29. Fan L, Hu Y, Wang X, Zhang L, Li F, Han D, Li Z, Zhang Q, Wang Z, Niu L (2012) Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101:192–197

    Article  CAS  Google Scholar 

  30. Bertilsson L, Tomson T (1986) Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10, 11-epoxide, Clin. Pharmacokinet 11(3):177–198

    Article  CAS  Google Scholar 

  31. Severus E, Fiebig J, Pfennig A, Bauer M (2018) Carbamazepine and valproic acid as mood stabilizers in the therapy of bipolar disorder. Is their use still justified? Psycopharmakotherapie 25:247–249

    Google Scholar 

  32. Rockville M (2007) The United States Pharmacopoeia 30, the National Formulary 25 US Pharmacopeial Convention, Electronic version

Download references

Acknowledgements

Research reported in this publication was supported by Elite Researcher Grant Committee under grant number 963572 from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaheh Rahimpour.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatefi, A., Rahimpour, E., Khoubnasabjafari, M. et al. A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate. Microchim Acta 186, 194 (2019). https://doi.org/10.1007/s00604-019-3278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3278-z

Keywords

Navigation