Skip to main content
Log in

Voltammetric simultaneous determination of catechol and hydroquinone using a glassy carbon electrode modified with a ternary hybrid material composed of reduced graphene oxide, magnetite nanoparticles and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor is described for the simultaneous determination of the pollutants catechol (CC) and hydroquinone (HQ). A glassy carbon electrode (GCE) was modified with reduced graphene oxide, Fe3O4 and gold nanoparticles and then showed a pair of well-defined voltammetric peaks for CC and HQ. Its oxidation peak potentials (located at 0.21 and 0.10 V vs. Ag/AgCl) are well separated, and this makes it suitable for simultaneous determination of the two isomers. Under optimal conditions, the oxidation peak currents of CC and HQ increase linearly in the 0.05–550 μM and 0.1–500 μM concentration ranges, even in the presence of 0.1 mM of the respective other isomer. The detection limits are 0.02 and 0.17 μM (at S/N = 3), respectively. The modified GCE exhibits good selectivity and recovery when applied for the analysis of spiked wastewater.

Ternary hybrid nanomaterials of rGO-Fe3O4-Au was developed for simultaneous electrochemical determination of catechol (CC) and hydroquinone (HQ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guo Q, Huang J, Chen P, Liu Y, Hou H, You T (2012) Simultaneous determination of catechol and hydroquinone using electrospun carbon nanofibers modified electrode. Sensors Actuators B Chem 163:179–185

    Article  CAS  Google Scholar 

  2. Si W, Lei W, Zhang Y, Xia M, Wang F, Hao Q (2012) Electrodeposition of graphene oxide doped poly (3, 4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim Acta 85:295–301

    Article  CAS  Google Scholar 

  3. Ahammad AS, Rahman MM, Xu GR, Kim S, Lee JJ (2011) Highly sensitive and simultaneous determination of hydroquinone and catechol at poly (thionine) modified glassy carbon electrode. Electrochim Acta 56:5266–5271

    Article  CAS  Google Scholar 

  4. Shen Y, Rao D, Sheng Q, Zheng J (2017) Simultaneous voltammetric determination of hydroquinone and catechol by using a glassy carbon electrode modified with carboxy-functionalized carbon nanotubes in a chitosan matrix and decorated with gold nanoparticles. Microchim Acta 184:3591–3601

    Article  CAS  Google Scholar 

  5. Huang W, Zhang T, Hu X, Wang Y, Wang J (2018) Amperometric determination of hydroquinone and catechol using a glassy carbon electrode modified with a porous carbon material doped with an iron species. Microchim Acta 185(1):37–44

    Article  Google Scholar 

  6. Liu Z, Wang Z, Cao Y, Jing Y, Liu Y (2011) High sensitive simultaneous determination of hydroquinone and catechol based on graphene/BMIMPF6 nanocomposite modified electrode. Sensors Actuators B Chem 157:540–546

    Article  CAS  Google Scholar 

  7. Hatamluyi B, Lorestani F, Es’haghi Z (2018) Au/Pd@rGO nanocomposite decorated with poly (L-cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, ifosfamide and etoposide. Biosens Bioelectron 120:22–29

    Article  CAS  Google Scholar 

  8. Liu C, Huang J, Wang L (2018) Electrochemical synthesis of a nanocomposite consisting of carboxy-modified multi-walled carbon nanotubes, polythionine and platinum nanoparticles for simultaneous voltammetric determination of myricetin and rutin. Microchim Acta 185:414–424

    Article  Google Scholar 

  9. Baghayeri M, Amiri A, Maleki B, Alizadeh Z, Reiser O (2018) A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sensors Actuators B Chem 273:1442–1450

    Article  CAS  Google Scholar 

  10. Pungjunun K, Chaiyo S, Jantrahong I, Nantaphol S, Siangproh W, Chailapakul O (2018) Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim Acta 185:324–332

    Article  Google Scholar 

  11. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  12. Teo PS, Lim HN, Huang NM, Chia CH, Harrison I (2012) Room temperature in situ chemical synthesis of Fe3O4/graphene. Ceram Int 38:6411–6416

    Article  CAS  Google Scholar 

  13. Peng D, Hu B, Kang M, Wang M, He L, Zhang Z, Fang S (2016) Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect cu (II). Appl Surf Sci 390:422–429

    Article  CAS  Google Scholar 

  14. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  15. Kong FY, Li WW, Wang JY, Wang W (2015) UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated grapheme for quantitative iodide analysis. Biosens Bioelectron 69:206–212

    Article  CAS  Google Scholar 

  16. Zheng J, Dong Y, Wang W, Ma Y, Hu J, Chen X, Chen X (2013) In-situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic properties. Nanoscale 5:4894–4901

    Article  CAS  Google Scholar 

  17. Shoaie N, Forouzandeh M, Omidfar K (2018) Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles. Microchim Acta 185:217–226

    Article  Google Scholar 

  18. Zhang Y, Xiao J, Sun Y, Wang L, Dong X, Ren J, Xiao F (2018) Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: in situ electrochemical detection in live cancer cells. Biosens Bioelectron 100:453–461

    Article  CAS  Google Scholar 

  19. Maduraiveeran G, Ramaraj R (2007) Gold nanoparticles embedded in silica sol-gel matrix as an amperometric sensor for hydrogen peroxide. J Electroanal Chem 608:52–58

    Article  CAS  Google Scholar 

  20. Zeng T, Ma YR, Niu HY, Cai YQ (2012) A novel Fe3O4-graphene-Au multifunctional nanocomposite: green synthesis and catalytic application. J Mater Chem 22:18658–18663

    Article  CAS  Google Scholar 

  21. Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Article  CAS  Google Scholar 

  22. Kong FY, Li XR, Zhao WW, Xu JJ, Chen HY (2012) Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing. Electrochem Commun 14:59–62

    Article  CAS  Google Scholar 

  23. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  24. Fan L, Li X, Kan X (2016) Disposable graphite paper based sensor for sensitive simultaneous determination of hydroquinone and catechol. Electrochim Acta 213:504–511

    Article  CAS  Google Scholar 

  25. Zheng L, Xiong L, Li Y, Xu J, Kang X, Zou Z, Yang S, Xia J (2013) Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sensors Actuators B Chem 177:344–349

    Article  CAS  Google Scholar 

  26. Huang YH, Chen JH, Sun X, Su ZB, Xing HT, Hu SR, Weng W, Guo HX, Wu WB, He YS (2015) One-pot hydrothermal synthesis carbon nanocages-reduced graphene oxide composites for simultaneous electrochemical detection of catechol and hydroquinone. Sensors Actuators B Chem 212:165–173

    Article  CAS  Google Scholar 

  27. Mao H, Liu M, Cao Z, Ji C, Sun Y, Liu D, Wu S, Zhang Y, Song XM (2017) Poly (4-vinylphenylboronic acid) functionalized polypyrrole/graphene oxide nanosheets for simultaneous electrochemical determination of catechol and hydroquinone. Appl Surf Sci 420:594–605

    Article  CAS  Google Scholar 

  28. Buleandra M, Rabinca AA, Badea IA, Balan A, Stamatin I, Mihailciuc C, Ciucu AA (2017) Voltammetric determination of dihydroxybenzene isomers using a disposable pencil graphite electrode modified with cobalt-phthalocyanine. Microchim Acta 184:1481–1488

    Article  CAS  Google Scholar 

  29. Wang X, Xi M, Guo M, Sheng F, Xiao G, Wu S, Matsuura H (2016) An electrochemically aminated glassy carbon electrode for simultaneous determination of hydroquinone and catechol. Analyst 141:1077–1082

    Article  CAS  Google Scholar 

  30. Velmurugan M, Karikalan N, Chen SM, Cheng YH, Karuppiah C (2017) Electrochemical preparation of activated graphene oxide for the simultaneous determination of hydroquinone and catechol. J Colloid Interface Sci 500:54–62

    Article  CAS  Google Scholar 

  31. Alshahrani LA, Liu L, Sathishkumar P, Nan J, Gu FL (2018) Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. J Electroanal Chem 815:68–75

    Article  CAS  Google Scholar 

  32. Zhao L, Yu J, Yue S, Zhang L, Wang Z, Guo P, Liu Q (2018) Nickel oxide/carbon nanotube nanocomposites prepared by atomic layer deposition for electrochemical sensing of hydroquinone and catechol. J Electroanal Chem 808:245–251

    Article  CAS  Google Scholar 

  33. Goulart LA, Gonçalves R, Correa AA, Pereira EC, Mascaro LH (2018) Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Microchim Acta 185:12–21

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21575123, 21675139, 21603184, 21705140), the Natural Science Foundation of Jiangsu Province (BK20170474), the opening project of Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland (K2016-17, K2016-20), and Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1033 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, FY., Li, RF., Yao, L. et al. Voltammetric simultaneous determination of catechol and hydroquinone using a glassy carbon electrode modified with a ternary hybrid material composed of reduced graphene oxide, magnetite nanoparticles and gold nanoparticles. Microchim Acta 186, 177 (2019). https://doi.org/10.1007/s00604-019-3273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3273-4

Keywords

Navigation