Skip to main content
Log in

2D-Single-crystal hexagonal gold nanosheets for ultra-trace voltammetric determination of captopril

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Two dimensional single-crystal hexagonal gold nanosheets (SCHGNSs) were prepared by microwave heating of a solution of HAuCl4 in an ionic liquid. The SCHGNSs were characterized by field emission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, atomic force microscopy and electrochemical impedance spectroscopy. The SCHGNSs were then used to modify a graphite paste electrode for voltammetric determination of the hypertension drug captopril (CAP). The modified electrode showed a well-defined oxidation peak (at 0.41 V vs. Ag/AgCl) at pH 7.0 using differential pulse voltammetry. Under the optimum conditions, the response is linear in the 2–400 nM and 4.0–50 μM CAP concentration range, and the detection limit (at S/N = 3) is 0.3 nM. The sensor was successfully applied to the determination of CAP in pharmaceutical tablets and in spiked urine.

Schematic presentation of the preparation of single crystal hexagonal gold nanosheets and their use to modify a carbon paste electrode for ultra-trace voltammetric determination of the drug captopril

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bouvy C, Baker GA, Yin H, Dai S (2010) Growth of gold nanosheets and nanopolyhedra in pyrrolidinium-based ionic liquids: investigation of the cation effect on the resulting morphologies. Cryst Growth Des 10(3):1319–1322

    Article  CAS  Google Scholar 

  2. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    Article  CAS  Google Scholar 

  3. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15(5):414–416

    Article  CAS  Google Scholar 

  4. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910

    Article  CAS  Google Scholar 

  5. Hsu M-S, Chen Y-L, Lee C-Y, Chiu H-T (2012) Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Appl Mater Interfaces 4(10):5570–5575

    Article  CAS  Google Scholar 

  6. Wang Y, Shan X, Wang H, Wang S, Tao N (2017) Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J Am Chem Soc 139(4):1376–1379

    Article  CAS  Google Scholar 

  7. Senger R, Dag S, Ciraci S (2004) Chiral single-wall gold nanotubes. Phys Rev Lett 93(19):196807

    Article  CAS  Google Scholar 

  8. Wang L, Zhu Y, Wang J-Q, Liu F, Huang J, Meng X, Basset J-M, Han Y, Xiao F-S (2015) Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds. Nat Commun 6:6957

    Article  CAS  Google Scholar 

  9. Soejima T, Kimizuka N (2005) Ultrathin gold nanosheets formed by photoreduction at the ionic liquid/water interface. Chem Lett 34(9):1234–1235

    Article  CAS  Google Scholar 

  10. Andoy NM, Zhou X, Choudhary E, Shen H, Liu G, Chen P (2013) Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J Am Chem Soc 135(5):1845–1852

    Article  CAS  Google Scholar 

  11. Tsuji M, Hashimoto M, Nishizawa Y, Tsuji T (2003) Preparation of gold nanoplates by a microwave-polyol method. Chem Lett 32(12):1114–1115

    Article  CAS  Google Scholar 

  12. Li Z, Liu Z, Zhang J, Han B, Jimin D, Gao Y, Jiang T (2005) Synthesis of single-crystal gold nanosheets of large size in ionic liquids. J Phys Chem B 109(30):14445–14448

    Article  CAS  Google Scholar 

  13. Lee JK, Kim D-C, Eui Song C, Lee S-g (2003) Thermal behaviors of ionic liquids under microwave irradiation and their application on microwave-assisted catalytic Beckmann rearrangement of ketoximes. Synth Commun 33(13):2301–2307

    Article  CAS  Google Scholar 

  14. Berthold H, Schotten T, Honig H (2002) Transfer hydrogenation in ionic liquids under microwave irradiation. Synthesis 11:1607–1610

    Google Scholar 

  15. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15(3):341–350

    Article  CAS  Google Scholar 

  16. Shahrokhian S, Karimi M, Khajehsharifi H (2005) Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril. Sensors Actuators B Chem 109(2):278–284

    Article  CAS  Google Scholar 

  17. Goodman A, Goodman L, Rall T, Murad F (1959) Las Bases Farmacologicas de la Terapeutica Panamericana. Spain, Madrid, pp 616–620

    Google Scholar 

  18. Karimi-Maleh H, Ensafi A, Allafchian A (2010) Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode. J Solid State Electrochem 14(1):9

    Article  CAS  Google Scholar 

  19. Heel R, Brogden R, Speight T, Avery G (1980) Captopril: a preliminary review of its pharmacological properties and therapeutic efficacy. Drugs 20(6):409–452

    Article  CAS  Google Scholar 

  20. Huang T, He Z, Yang B, Shao L, Zheng X, Duan G (2006) Simultaneous determination of captopril and hydrochlorothiazide in human plasma by reverse-phase HPLC from linear gradient elution. J Pharm Biomed Anal 41(2):644–648

    Article  CAS  Google Scholar 

  21. Rezende KR, Mundim IM, Teixeira LS, Souza WC, Ramos DR, Cardoso CR, Souza IC, Gratão MZ, Bellório KB (2007) Determination of captopril in human plasma, using solid phase extraction and high-performance liquid chromatography, coupled to mass spectrometry: application to bioequivalence study. J Chromatogr B 850(1–2):59–67

    Article  CAS  Google Scholar 

  22. El-Shabrawy Y, El-Enany N, Salem K (2004) Sensitive kinetic spectrophotometric determination of captopril and ethamsylate in pharmaceutical preparations and biological fluids. Il Farmaco 59(10):803–808

    Article  CAS  Google Scholar 

  23. Duncan FM, Martin VI, Williams BC (1983) Development and optimisation of a radioimmunoassay for plasma captopril. Clin Chim Acta 131(3):295–303

    Article  CAS  Google Scholar 

  24. Absalan G, Akhond M, Karimi R, Ramezani AM (2018) Simultaneous determination of captopril and hydrochlorothiazide by using a carbon ionic liquid electrode modified with copper hydroxide nanoparticles. Microchim Acta 185(2):97

    Article  Google Scholar 

  25. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294

    Article  CAS  Google Scholar 

  26. Frederix F, Bonroy K, Laureyn W, Reekmans G, Campitelli A, Dehaen W, Maes G (2003) Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold. Langmuir 19(10):4351–4357

    Article  CAS  Google Scholar 

  27. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. wiley, New York

    Google Scholar 

  28. Zhang Q-L, Feng J-X, Wang A-J, Wei J, Lv Z-Y, Feng J-J (2015) A glassy carbon electrode modified with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen. Microchim Acta 182(3–4):589–595

    Article  CAS  Google Scholar 

  29. Moon GD, Lim GH, Song JH, Shin M, Yu T, Lim B, Jeong U (2013) Highly stretchable patterned gold electrodes made of au nanosheets. Adv Mater 25(19):2707–2712

    Article  CAS  Google Scholar 

  30. Shetti NP, Malode SJ, Nandibewoor ST (2015) Electro-oxidation of captopril at a gold electrode and its determination in pharmaceuticals and human fluids. Anal Methods 7(20):8673–8682

    Article  CAS  Google Scholar 

  31. Ribeiro PS, Santini A, Pezza HR, Pezza L (2003) Potentiometric determination of captopril in pharmaceutical formulations. Eclética Química 28(1):39–44

    Article  CAS  Google Scholar 

  32. Soomro RA, Tunesi MM, Karakus S, Kalwar N (2017) Highly sensitive electrochemical determination of captopril using CuO modified ITO electrode: the effect of in situ grown nanostructures over signal sensitivity. RSC Adv 7(31):19353–19362

    Article  CAS  Google Scholar 

  33. Niazi A, Pourghobadi Z, Nematollahi D, Beiginejad H (2014) Electrochemical oxidation and Voltammetric determination of captopril using 4, 4′-Biphenol as a homogeneous mediator. J Electrochem Soc 161(5):H284–H289

    Article  CAS  Google Scholar 

  34. Raoof JB, Ojani R, Baghayeri M (2011) Sensitive voltammetric determination of captopril using a carbon paste electrode modified with nano-TiO2/ferrocene carboxylic acid. Chin J Catal 32(11–12):1685–1692

    Article  CAS  Google Scholar 

  35. Rahman N, Anwar N, Kashif M, Hoda N (2006) A sensitive kinetic spectrophotometric method for the determination of captopril in bulk and dosage forms. Acta Pharma 56(3):347–357

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shahbakhsh.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbakhsh, M., Noroozifar, M. 2D-Single-crystal hexagonal gold nanosheets for ultra-trace voltammetric determination of captopril. Microchim Acta 186, 195 (2019). https://doi.org/10.1007/s00604-019-3260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3260-9

Keywords

Navigation