Skip to main content
Log in

Fluorometric determination of the activity of inorganic pyrophosphatase and its inhibitors by exploiting the peroxidase mimicking properties of a two-dimensional metal organic framework

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A copper(II)-based two-dimensional metal-organic framework with nanosheet structure (CuBDC NS) that possesses peroxidase (POx) mimicking activity was prepared. In the presence of hydrogen peroxide, the system catalyses the oxidation of terephthalic acid to a blue-fluorescent product (excitation = 315 nm; emission = 425 nm). Pyrophosphate has a very strong affinity for Cu2+ ion and blocks the POx-mimicking activity of the CuBDC NS. If, however, inorganic pyrophosphatase is present, the POx mimicking activity is gradually restored because pyrophosphate is hydrolyzed. The findings were used to design a method for the determination of the activity of inorganic pyrophosphatase by fluorometry. Fluorescence increases linearly in the 1–50 mU·mL−1 inorganic pyrophosphatase activity range. The limit of detection is 0.6 mU·mL−1 (S/N = 3).

A copper(II)-based two-dimensional metal-organic framework (CuBDC NS) is described that possesses POx-mimicking activity. Inorganic pyrophosphate (PPi) was hydrolyzed to phosphate in the presence of inorganic pyrophosphatase (PPase). Hence, it cannot coordinate with Cu2+ in CuBDC NS, its structure was well-conserved to catalyses the oxidation of terephthalic acid (H2BDC) to produce a blue fluorescent product (oxBDC) in the presence of hydrogen peroxide (H2O2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin Y, Ren J, Qu X (2014) Nano-gold as artificial enzymes: hidden talents. Adv Mater 26:4200–4217

    Article  CAS  Google Scholar 

  2. Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of Iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6:4001–4012

    Article  CAS  Google Scholar 

  3. Lin T, Zhong L, Song Z, Guo L, Wu H, Guo Q, Chen Y, Fu F, Chen G (2014) Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens Bioelectron 62:302–307

    Article  CAS  Google Scholar 

  4. Tian J, Liu Q, Ge C, Xing Z, Asiri AM, Al-Youbi AO, Sun X (2013) Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 5:8921–8924

    Article  CAS  Google Scholar 

  5. Tao Y, Lin Y, Huang Z, Ren J, Qu X (2013) Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for Cancer cell detection. Adv Mater 25:2594–2599

    Article  CAS  Google Scholar 

  6. He W, Liu Y, Yuan J, Yin J-J, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y, Guo Y (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32:1139–1147

    Article  CAS  Google Scholar 

  7. Cui Y, Ding Z, Liu P, Antonietti M, Fu X, Wang X (2012) Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys Chem Chem Phys 14:1455–1462

    Article  CAS  Google Scholar 

  8. Hamon L, Llewellyn PL, Devic T, Ghoufi A, Clet G, Guillerm V, Pirngruber GD, Maurin G, Serre C, Driver G, van Beek W, Jolimaitre E, Vimont A, Daturi M, Ferey G (2009) Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J Am Chem Soc 131:17490–17499

    Article  CAS  Google Scholar 

  9. Garcia-Garcia P, Mueller M, Corma A (2014) MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chem Sci 5:2979–3007

    Article  CAS  Google Scholar 

  10. Guo Z, Xu H, Su S, Cai J, Dang S, Xiang S, Qian G, Zhang H, O'Keeffe M, Chen B (2011) A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem Commun 47:5551–5553

    Article  CAS  Google Scholar 

  11. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang J-S, Hwang YK, Marsaud V, Bories P-N, Cynober L, Gil S, Ferey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    Article  CAS  Google Scholar 

  12. Dang D, Wu P, He C, Xie Z, Duan C (2010) Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. J Am Chem Soc 132:14321–14323

    Article  CAS  Google Scholar 

  13. Wang K, Feng D, Liu T-F, Su J, Yuan S, Chen Y-P, Bosch M, Zou X, Zhou H-C (2014) A series of highly stable mesoporous Metalloporphyrin Fe-MOFs. J Am Chem Soc 136:13983–13986

    Article  CAS  Google Scholar 

  14. Zhang J-W, Zhang H-T, Du Z-Y, Wang X, Yua S-H, Jiang H-L (2014) Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun 50:1092–1094

    Article  CAS  Google Scholar 

  15. Tan H, Li Q, Zhou Z, Ma C, Song Y, Xu F, Wang L (2015) A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal Chim Acta 856:90–95

    Article  CAS  Google Scholar 

  16. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabres i Xamena FX, Gascon J (2015) Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14:48–55

    Article  CAS  Google Scholar 

  17. Araki T, Kondo A, Maeda K (2013) The first lanthanide organophosphonate nanosheet by exfoliation of layered compounds. Chem Commun 49:552–554

    Article  CAS  Google Scholar 

  18. Hu S, Yan J, Huang X, Guo L, Lin Z, Luo F, Qiu B, Wong K-Y, Chen G (2018) A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sensors Actuators B Chem 267:312–319

    Article  CAS  Google Scholar 

  19. Chen XY, Chen C, Zhang ZJ, Xie DH (2013) Gelatin-derived nitrogen-doped porous carbon via a dual-template carbonization method for high performance supercapacitors. J Mater Chem A 1:10903–10911

    Article  CAS  Google Scholar 

  20. Huang J, Wang S, Guo X, Wang D, Zhu B, Wu S (2008) The preparation and catalytic behavior of CuO/TixSn1-xO2 catalysts for low-temperature carbon monoxide oxidation. Catal Commun 9:2131–2135

    Article  CAS  Google Scholar 

  21. Qin J, Wang S, Ren H, Hou Y, Wang X (2015) Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl Catal B 179:1–8

    Article  CAS  Google Scholar 

  22. Rong M, Lin L, Song X, Zhao T, Zhong Y, Yan J, Wang Y, Chen X (2015) A label-free fluorescence sensing approach for selective and sensitive detection of 2,4,6-Trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride Nanosheets. Anal Chem 87:1288–1296

    Article  CAS  Google Scholar 

  23. Yang Y, Goh K, Wang R, Bae T-H (2017) High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chem Commun 53:4254–4257

    Article  CAS  Google Scholar 

  24. Mueller M, Hermes S, Kaehler K, van den Berg MWE, Muhler M, Fischer RA (2008) Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis. Chem Mater 20:4576–4587

    Article  CAS  Google Scholar 

  25. Xu K, Chen Z, Zhou L, Zheng O, Wu X, Guo L, Qiu B, Lin Z, Chen G (2015) Fluorometric method for inorganic pyrophosphatase activity detection and inhibitor screening based on click chemistry. Anal Chem 87:816–820

    Article  CAS  Google Scholar 

  26. Sun J, Wang B, Zhao X, Li Z-J, Yang X (2016) Fluorescent and colorimetric dual-readout assay for inorganic pyrophosphatase with Cu2+−triggered oxidation of o-Phenylenediamine. Anal Chem 88:1355–1361

    Article  CAS  Google Scholar 

  27. Deng J, Jiang Q, Wang Y, Yang L, Yu P, Mao L (2013) Real-time colorimetric assay of inorganic pyrophosphatase activity based on reversibly competitive coordination of Cu2+ between cysteine and pyrophosphate ion. Anal Chem 85:9409–9415

    Article  CAS  Google Scholar 

  28. Li Y-Z, Li T-T, Chen W, Song Y-Y (2017) Co4N nanowires: Noble-metal-free peroxidase mimetic with excellent salt- and temperature-resistant abilities. ACS Appl Mater Interfaces 9:29881–29888

    Article  CAS  Google Scholar 

  29. Zhang Y, Guo Y, Zhao M, Lin C, Lin Z, Luo F, Chen G (2017) Fluorescence biosensor for inorganic pyrophosphatase activity. Anal Bioanal Chem 409:999–1005

    Article  CAS  Google Scholar 

  30. Zhang L, Li M, Qin Y, Chu Z, Zhao S (2014) A convenient label free colorimetric assay for pyrophosphatase activity based on a pyrophosphate-inhibited Cu 2+–ABTS–H 2 O 2 reaction. Analyst 139:6298–6303

    Article  CAS  Google Scholar 

  31. Tang C, Feng H, Huang Y, Qian Z (2017) Reversible luminescent nanoswitches based on aggregation-induced emission enhancement of silver nanoclusters for luminescence turn-on assay of inorganic pyrophosphatase activity. Anal Chem 89:4994–5002

    Article  CAS  Google Scholar 

  32. Abbas MN, Saeed AA, Singh B, Radowan AA, Dempsey E (2015) A cysteine sensor based on a gold nanoparticle–iron phthalocyanine modified graphite paste electrode. Anal Methods 7:2529–2536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the financial support of the National Natural Science Foundation of China (21375021), STS Key Project of Fujian Province (2017 T3007), Nature Sciences Funding of Fujian Province (2018 J01682) and the Project of Fuzhou Science and Technology Bureau (2016-G-66), Key Project of Fujian Province (2015Y0050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Qiu or Zhenhua Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Zhu, L., Lam, C.W. et al. Fluorometric determination of the activity of inorganic pyrophosphatase and its inhibitors by exploiting the peroxidase mimicking properties of a two-dimensional metal organic framework. Microchim Acta 186, 190 (2019). https://doi.org/10.1007/s00604-019-3250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3250-y

Keywords

Navigation