Byun JY, Shin YB, Kim DM, Kim MG (2013) A colorimetric homogeneous immunoassay system for the C-reactive protein. Analyst 138(5):1538–1543. https://doi.org/10.1039/c3an36592a
CAS
Article
PubMed
Google Scholar
Hennessey H, Afara N, Omanovic S, Padjen AL (2009) Electrochemical investigations of the interaction of C-reactive protein (CRP) with a CRP antibody chemically immobilized on a gold surface. Anal Chim Acta 643(1–2):45–53. https://doi.org/10.1016/j.aca.2009.04.009
CAS
Article
PubMed
Google Scholar
Choi HW, Sakata Y, Kurihara Y, Ooya T, Takeuchi T (2012) Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system. Anal Chim Acta 728:64–68. https://doi.org/10.1016/j.aca.2012.03.030
CAS
Article
PubMed
Google Scholar
Bryan T, Luo X, Bueno PR, Davis JJ (2013) An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosens Bioelectron 39(1):94–98. https://doi.org/10.1016/j.bios.2012.06.051
CAS
Article
PubMed
Google Scholar
Fakanya WM, Tothill IE (2014) Detection of the inflammation biomarker C-reactive protein in serum samples: towards an optimal biosensor formula. Biosensors (Basel) 4(4):340–357. https://doi.org/10.3390/bios4040340
CAS
Article
Google Scholar
Kokkinos C, Prodromidis M, Economou A, Petrou P, Kakabakos S (2015) Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum. Anal Chim Acta 886:29–36. https://doi.org/10.1016/j.aca.2015.05.035
CAS
Article
PubMed
Google Scholar
Thangamuthu M, Santschi C, Martin O JF (2018) Label-free electrochemical immunoassay for C-reactive protein. Biosensors 8(2):34
Article
Google Scholar
Srisa-Art M, Boehle KE, Geiss BJ, Henry CS (2018) Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Anal Chem 90(1):1035–1043. https://doi.org/10.1021/acs.analchem.7b04628
CAS
Article
PubMed
Google Scholar
Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/ colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82(5):1727–1732. https://doi.org/10.1021/ac9022555
CAS
Article
PubMed
Google Scholar
Charoenkitamorn K, Chaiyo S, Chailapakul O, Siangproh W (2018) Low-cost and disposable sensors for the simultaneous determination of coenzyme Q10 and α-lipoic acid using manganese (IV) oxide-modified screen-printed graphene electrodes. Anal Chim Acta 1004:22–31. https://doi.org/10.1016/j.aca.2017.12.026
CAS
Article
PubMed
Google Scholar
Shen W, Tian D, Cui H, Yang D, Bian Z (2011) Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels. Biosens Bioelectron 27(1):18–24. https://doi.org/10.1016/j.bios.2011.05.022
CAS
Article
PubMed
Google Scholar
Byzova NA, Zherdev AV, Vengerov YY, Starovoitova ТA, Dzantiev BB (2017) A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers. Microchim Acta 184(2):463–471. https://doi.org/10.1007/s00604-016-2022-1
CAS
Article
Google Scholar
Zhang J, Zhang W, Guo J, Wang J, Zhang Y (2017) Electrochemical detection of C-reactive protein using copper nanoparticles and hybridization chain reaction amplifying signal. Anal Biochem 539:1–7. https://doi.org/10.1016/j.ab.2017.09.017
CAS
Article
PubMed
Google Scholar
Yan Q, Yang Y, Tan Z, Liu Q, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong Y (2018) A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron 103:151–157. https://doi.org/10.1016/j.bios.2017.12.040
CAS
Article
PubMed
Google Scholar
Jampasa S, Siangproh W, Laocharoensuk R, Vilaivan T, Chailapakul O (2018) Electrochemical detection of c-reactive protein based on anthraquinone-labeled antibody using a screen-printed graphene electrode. Talanta 183:311–319. https://doi.org/10.1016/j.talanta.2018.02.075
CAS
Article
PubMed
Google Scholar
Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10. https://doi.org/10.1021/ac9013989
CAS
Article
PubMed
Google Scholar
Glavan AC, Niu J, Chen Z, Güder F, Cheng C-M, Liu D, Whitesides GM (2016) Analytical devices based on direct synthesis of DNA on paper. Anal Chem 88(1):725–731. https://doi.org/10.1021/acs.analchem.5b02822
CAS
Article
PubMed
Google Scholar
Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10):3699–3707. https://doi.org/10.1021/ac800112r
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133(44):17564–17566. https://doi.org/10.1021/ja2071779
CAS
Article
PubMed
Google Scholar
Renault C, Anderson MJ, Crooks RM (2014) Electrochemistry in hollow-channel paper analytical devices. J Am Chem Soc 136(12):4616–4623. https://doi.org/10.1021/ja4118544
CAS
Article
PubMed
Google Scholar
Li L, Li W, Yang H, Ma C, Yu J, Yan M, Song X (2014) Sensitive origami dual-analyte electrochemical immunodevice based on polyaniline/Au-paper electrode and multi-labeled 3D graphene sheets. Electrochim Acta 120:102–109. https://doi.org/10.1016/j.electacta.2013.12.076
CAS
Article
Google Scholar
Ma C, Li W, Kong Q, Yang H, Bian Z, Song X, Yu J, Yan M (2015) 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosens Bioelectron 63:7–13. https://doi.org/10.1016/j.bios.2014.07.014
CAS
Article
PubMed
Google Scholar
Wang X, Yang C, Zhu S, Yan M, Ge S, Yu J (2017) 3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework. Biosens Bioelectron 87:108–115. https://doi.org/10.1016/j.bios.2016.08.016
CAS
Article
PubMed
Google Scholar
Pungjunun K, Chaiyo S, Jantrahong I, Nantaphol S, Siangproh W, Chailapakul O (2018) Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim Acta 185(7):324. https://doi.org/10.1007/s00604-018-2821-7
CAS
Article
Google Scholar
Jampasa S, Siangproh W, Duangmal K, Chailapakul O (2016) Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta 160:113–124. https://doi.org/10.1016/j.talanta.2016.07.011
CAS
Article
PubMed
Google Scholar
Wang L, Hua E, Liang M, Ma C, Liu Z, Sheng S, Liu M, Xie G, Feng W (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207. https://doi.org/10.1016/j.bios.2013.07.049
CAS
Article
PubMed
Google Scholar
Songjaroen T, Feeny RM, Mensack MM, Laiwattanapaisal W, Henry CS (2016) Label-free detection of C-reactive protein using an electrochemical DNA immunoassay. Sens BioSensing 8:14–19. https://doi.org/10.1016/j.sbsr.2016.03.003
Article
Google Scholar
Özcan B, Sezgintürk MK (2017) A novel label free immunosensor based on single-use ITO-PET electrodes for detection MAGE1 protein. J Electroanal Chem 792:31–38. https://doi.org/10.1016/j.jelechem.2017.03.036
CAS
Article
Google Scholar
Zou Y, He L, Dou K, Wang S, Ke P, Wang A (2014) Amperometric glucose sensor based on boron doped microcrystalline diamond film electrode with different boron doping levels. RSC Adv 4(102):58349–58356. https://doi.org/10.1039/c4ra10266e
CAS
Article
Google Scholar
Feng D, Lu X, Dong X, Ling Y, Zhang Y (2013) Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim Acta 180(9):767–774. https://doi.org/10.1007/s00604-013-0985-8
CAS
Article
Google Scholar
Gupta RK, Periyakaruppan A, Meyyappan M, Koehne JE (2014) Label-free detection of C-reactive protein using a carbon nanofiber based biosensor. Biosens Bioelectron 59:112–119. https://doi.org/10.1016/j.bios.2014.03.027
CAS
Article
PubMed
PubMed Central
Google Scholar
Yagati AK, Pyun JC, Min J, Cho S (2016) Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor. Bioelectrochemistry 107:37–44. https://doi.org/10.1016/j.bioelechem.2015.10.002
CAS
Article
PubMed
Google Scholar
Chen X, Wang Y, Zhou J, Yan W, Li X, Zhu J-J (2008) Electrochemical impedance Immunosensor based on three-dimensionally ordered macroporous gold film. Anal Chem 80(6):2133–2140. https://doi.org/10.1021/ac7021376
CAS
Article
PubMed
Google Scholar
Cozlea DL, Farcas DM, Nagy A, Keresztesi AA, Tifrea R, Cozlea L, Carașca E (2013) The impact of C reactive protein on global cardiovascular risk on patients with coronary artery disease. Curr Health Sci J 39(4):225–231
CAS
PubMed
PubMed Central
Google Scholar
Arques S (2018) Human serum albumin in cardiovascular diseases. Eur J Intern Med 52:8–12. https://doi.org/10.1016/j.ejim.2018.04.014
CAS
Article
PubMed
Google Scholar