Skip to main content

Advertisement

Log in

Electrochemical determination of the activity and inhibition of telomerase based on the interaction of DNA with molybdate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive electrochemical sensor is described for the determination of the activity of telomerase. It is based on a DNA-generated current that is due to the reaction of the phosphate groups on DNA with molybdate to form a redox-active molybdophosphate. A telomerase substrate primer was first immobilized on a gold electrode. In the presence of telomerase and deoxyribonucleoside triphosphates (dNTPs), the primer can be extended with repetitive nucleotide sequences (TTAGGG). The subsequent reaction of the sensor with molybdate results in the enhancement of electrochemical current intensity due to an increased amount of nucleotides on the electrode. Sensitivity can be further improved by introducing a hairpin probe that partially hybridizes with the repetitive TTAGGG sequence and further enhances the amount of DNA on the electrode. The biosensor, best operated at 0.2 V (vs. Ag/AgCl) shows a linear response to telomerase activity from 1×102 to 107 Hela cells mL−1. The assay was applied to the detection of telomerase activity in HeLa cancer cells treated with the anticancer drug epigallocatechin gallate, and the results indicate that it holds great potential in anticancer drug screening.

Schematic presentation of an ultrasensitive electrochemical sensor for the determination of telomerase activity based on DNA generated electrochemical current. dNTPs in the scheme represents deoxyribonucleoside triphosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang H-R, Wu M-S, Xu J-J, Chen H-Y (2014) Signal-on dual-potential Electrochemiluminescence based on Luminol-gold bifunctional nanoparticles for telomerase detection. Anal Chem 86(8):3834–3840

    Article  CAS  Google Scholar 

  2. Yang H, Liu A, Wei M, Liu Y, Lv B, Wei W, Zhang Y, Liu S (2017) Visual, label-free telomerase activity monitor via enzymatic etching of gold Nanorods. Anal Chem 89(22):12094–12100

    Article  CAS  Google Scholar 

  3. Su D, Huang X, Dong C, Ren J (2018) Quantitative determination of telomerase activity by combining fluorescence correlation spectroscopy with telomerase repeat amplification protocol. Anal Chem 90(1):1006–1013

    Article  CAS  Google Scholar 

  4. Liu X, Wei M, Liu Y, Lv B, Wei W, Zhang Y, Liu S (2016) Label-free detection of telomerase activity in urine using telomerase-responsive porous anodic alumina Nanochannels. Anal Chem 88(16):8107–8114

    Article  CAS  Google Scholar 

  5. Graham MK, Meeker A (2017) Telomeres and telomerase in prostate cancer development and therapy. Nat Rev Urol 14(10):607–619

    Article  CAS  Google Scholar 

  6. Chen C, Wei M, Liu Y, Xu E, Wei W, Zhang Y, Liu S (2017) Visual and fluorometric determination of telomerase activity by using a cationic conjugated polymer and fluorescence resonance energy transfer. Microchim Acta 184(9):3453–3460

    Article  CAS  Google Scholar 

  7. Xu Y, Zhang P, Wang Z, Lv S, Ding C (2018) Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe. Microchim Acta 185(3) Unsp 198

  8. Zhang L, Peng J, Hong M-F, Chen J-Q, Liang R-P, Qiu J-D (2018) A facile graphene oxide-based fluorescent nanosensor for the in situ "turn-on" detection of telomerase activity. Analyst 143(10):2334–2341

    Article  CAS  Google Scholar 

  9. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015

    Article  CAS  Google Scholar 

  10. Cheung DH-C, Ho S-T, Lau K-F, Jin R, Wang Y-N, Kung H-F, Huang J-J, Shaw P-C (2017) Nucleophosmin interacts with PIN2/TERF1-interacting telomerase inhibitor 1 (PinX1) and attenuates the PinX1 inhibition on telomerase activity. Sci Rep 7(43650)

  11. Zhang L, Zhang S, Pan W, Liang Q, Song X (2016) Exonuclease I manipulating primer-modified gold nanoparticles for colorimetric telomerase activity assay. Biosens Bioelectron 77:144–148

    Article  CAS  Google Scholar 

  12. Luo J, Zhao D, Yang M, Qu F (2018) Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose. Microchim Acta 185(4) Unsp 229

  13. Deng C, Zhang M, Liu C, Deng H, Huang Y, Yang M, Xiang J, Ren B (2018) Electrostatic force triggering elastic condensation of double-stranded DNA for high-performance one-step immunoassay. Anal Chem 90(19):11446–11452

    Article  CAS  Google Scholar 

  14. Li X, Shen C, Yang M, Rasooly A (2018) Polycytosine DNA electric-current-generated Immunosensor for electrochemical detection of human epidermal growth factor Receptor2 (HER2). Anal Chem 90(7):4764–4769

    Article  CAS  Google Scholar 

  15. Shen C, Liu S, Li X, Zhao D, Yang M (2018) Immunoelectrochemical detection of thehuman epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification. Microchim Acta 185(12):547

    Article  Google Scholar 

  16. Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89(19):10264–10269

    Article  CAS  Google Scholar 

  17. Xiang W, Wang G, Cao S, Wang Q, Xiao X, Li T, Yang M (2018) Coupling antibody based recognition with DNA based signal amplification using an electrochemical probe modified with MnO2 nanosheets and gold nanoclusters: application to the sensitive voltammetric determination of the cancer biomarker alpha fetoprotein. Microchim Acta 185(7):335

    Article  Google Scholar 

  18. Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A (2017) DNA generated electric current biosensor. Anal Chem 89(4):2547–2552

    Article  CAS  Google Scholar 

  19. Feng K, Liu J, Deng L, Yu H, Yang M (2018) Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction. Microchim Acta 185(1) Unsp 28

  20. Ling P, Lei J, Jia L, Ju H (2016) Platinum nanoparticles encapsulated metal-organic frameworks for the electrochemical detection of telomerase activity. Chem Commun 52(6):1226–1229

    Article  CAS  Google Scholar 

  21. Lu M (2017) Bioresponsive-controlled release of methylene blue from magnetic mesoporous silica from the electrochemical detection of telomerase activity. Analyst 142(18):3477–3483

    Article  CAS  Google Scholar 

  22. Xiong C, Liang W, Zheng Y, Zhuo Y, Chai Y, Yuan R (2017) Ultrasensitive assay for telomerase activity via self-enhanced Electrochemiluminescent ruthenium complex doped metal-organic frameworks with high emission efficiency. Anal Chem 89(5):3222–3227

    Article  CAS  Google Scholar 

  23. Liu X, Li W, Hou T, Dong S, Yu G, Li F (2015) Homogeneous electrochemical strategy for human telomerase activity assay at single-cell level based on T7 exonuclease-aided target recycling amplification. Anal Chem 87(7):4030–4036

    Article  CAS  Google Scholar 

  24. Yang X-J, Zhang K, Zhang T-T, Xu J-J, Chen H-Y (2017) Reliable Forster resonance energy transfer probe based on structure-switching DNA for Ratiometric sensing of telomerase in living cells. Anal Chem 89(7):4216–4222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support of this work by the National Natural Science Foundation of China (Grant No.21575165).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Li or Minghui Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, H., Cao, S. et al. Electrochemical determination of the activity and inhibition of telomerase based on the interaction of DNA with molybdate. Microchim Acta 186, 96 (2019). https://doi.org/10.1007/s00604-018-3223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3223-6

Keywords

Navigation