Skip to main content
Log in

A spherical metal-organic coordination polymer for the microextraction of neonicotinoid insecticides prior to their determination by HPLC

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a new spherical metal-organic coordination polymer (MOCP) for use as an adsorbent in solid-phase microextraction (SPME). By applying the ions Co(II), Fe(II), Cu(II), and Zn(II) in these polymers, MOCP with different morphology were obtained. The respective coatings for SPME display different extraction efficiency towards neonicotinoid insecticides (neo-nics). The Co(II)@MOCP coating displays an improved extraction capability for neo-nics when compared to the four commercially available coatings studied. Following extraction with the Co(II)@MOCP-coated fiber, the neo-nics were eluted using 1 mL of trifluoroacetic acid/acetonitrile solution and quantified by high performance liquid chromatography. The method, when applied to spiked honey samples, has good linearity (0.5–600 μg kg−1) and a low limit of detection (0.05–0.15 μg kg−1). The precision (n = 6) for a single fiber was in the range of 3.6–8.3%. The reproducibility (for n = 5) from fiber-to-fiber ranges between 5.4 and 8.8%. The Co(II)@MOCP-coated fiber can be reused more than 80 times without any apparent reduction in its performance. In addition, the relative recoveries from spiked honey samples are very good (91.5%–103.5%).

A spherical metal-organic coordination polymer (MOCP) was synthesized under the regulation of Co(II) and used for the solid-phase microextraction (SPME) of neonicotinoid insecticides found in honey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cao X, Liu G, She Y, Jiang Z, Jin F, Jin M, Du P, Zhao F, Zhang Y, Wang J (2016) Preparation of magnetic metal organic framework composites for the extraction of neonicotinoid insecticides from environmental water samples. RSC Adv 6(114):113144–113151

    Article  CAS  Google Scholar 

  2. Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG, Redhead J, Ridding L, Dean H, Sleep D, Henrys P, Peyton J, Hulmes S, Hulmes L, Sárospataki M, Saure C, Edwards M, Genersch E, Knäbe S, Pywell RF (2017) Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356(6345):1393–1395

    Article  CAS  PubMed  Google Scholar 

  3. Kessler SC, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J, Softley S, Stout JC, Wright GA (2015) Bees prefer foods containing neonicotinoid pesticides. Nature 521(7550):74–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. European Union Pesticide Database (2018) Current MRLs values. Active substances detail. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?even-t=activesubstance.selection&language=EN Accessed 30 May 2018

  5. Farajzadehn MA, Bamorowat M, Mogaddam MRA (2016) Ringer tablet-based ionic liquid phase microextraction: application in extraction and preconcentration of neonicotinoid insecticides from fruit juice and vegetable samples. Talanta 160:211–216

    Article  Google Scholar 

  6. Vichapong J, Burakham R, Santaladchaiyakit Y, Srijaranai S (2016) A preconcentration method for analysis of neonicotinoids in honey samples by ionic liquid-based cold-induced aggregation microextraction. Talanta 155:216–221

    Article  CAS  PubMed  Google Scholar 

  7. Song S, Zhang C, Chen Z, He F, Wei J, Tan H (2018) Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC–MS/MS with anion exchanger-disposable pipette extraction. J Chromatogr A 1557:51–61

    Article  CAS  PubMed  Google Scholar 

  8. Jovanov P, Guzsvány V, Franko M, Lazić S, Sakač M, Šarić B, Banjac V (2013) Multi-residue method for determination of selected neonicotinoid insecticides in honey using optimized dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 111:125–133

    Article  CAS  PubMed  Google Scholar 

  9. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M (2013) Liquid chromatography with diode array detection and tandem mass spectrometry for the determination of neonicotinoid insecticides in honey samples using dispersive liquid–liquid microextraction. J Agric Food Chem 61(20):4799–4805

    Article  CAS  PubMed  Google Scholar 

  10. Valverde S, Ibáñez M, Bernal JL, Nozal MJ, Hernández F, Bernal J (2018) Development and validation of ultra high performance-liquid chromatography-tandem mass spectrometry based methods for the determination of neonicotinoid insecticides in honey. Food Chem 266:215–222

    Article  CAS  PubMed  Google Scholar 

  11. Tanner G, Czerwenka C (2011) LC-MS/MS analysis of neonicotinoid insecticides in honey: methodology and residue findings in austrian honeys. J Agric Food Chem 59(23):12271–12277

    Article  CAS  PubMed  Google Scholar 

  12. Kamel A (2010) Refined methodology for the determination of neonicotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Agric Food Chem 58(10):5926–5931

    Article  CAS  PubMed  Google Scholar 

  13. Hou J, Xie W, Hong D, Zhang W, Li F, Qian Y, Han C (2019) Simultaneous determination of ten neonicotinoid insecticides and two metabolites in honey and royal-jelly by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Food Chem 270:204–213

    Article  CAS  PubMed  Google Scholar 

  14. Pastor-Belda M, Garrido I, Campillo N, Viñas P, Hellín P, Flores P, Fenoll J (2016) Determination of spirocyclictetronic/tetramic acid derivatives and neonicotinoid insecticides in fruits and vegetables by liquid chromatography and mass spectrometry after dispersive liquid-liquid microextraction. Food Chem 202:389–395

    Article  CAS  PubMed  Google Scholar 

  15. Orso D, Floriano L, Ribeiro LC, Bandeira NMG, Prestes OD, Zanella R (2016) Simultaneous determination of multiclass pesticides and antibiotics in honey samples based on ultra-high performance liquid chromatography-tandem mass spectrometry. Food Anal Methods 9(6):1638–1653

    Article  Google Scholar 

  16. Pita-Calvo C, Guerra-Rodríguez ME, Vazquez M (2017) Analytical methods used in the quality control of honey. J Agric Food Chem 65(4):690–703

    Article  CAS  PubMed  Google Scholar 

  17. Beltran J, López FJ, Hernández F (2000) Solid-phase microextraction in pesticide residue analysis. J Chromatogr A 885(1–2):389–404

    Article  CAS  PubMed  Google Scholar 

  18. Arthur C, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145–2148

    Article  CAS  Google Scholar 

  19. Huang Z, Liu S, Xu J, Yin L, Zheng J, Zhou N, Ouyang G (2017) Porous organic polymers with different pore structures for sensitive solid-phase microextraction of environmental organic pollutants. Anal Chim Acta 989:21–28

    Article  CAS  PubMed  Google Scholar 

  20. Xu J, Liu X, Wang Q, Huang S, Yin L, Xu J, Liu X, Jiang R, Zhu F, Ouyang G (2018) Improving the sensitivity of solid-phase microextraction by reducing the volume of off-line elution solvent. Anal Chem 90(3):1572–1577

    Article  CAS  PubMed  Google Scholar 

  21. Huang Y, Li H, Bai M, Huang X (2018) Efficient extraction of perfluorocarboxylic acids in complex samples with a monolithic adsorbent combining fluorophilic and anion-exchange interactions. Anal Chim Acta 1011:50–58

    Article  CAS  PubMed  Google Scholar 

  22. Zeng J, Zhao C, Chen J, Subhan F, Luo L, Yu J, Cui B, Xing W, Chen X, Yan Z (2014) Ordered mesoporous carbon/Nafion as a versatile and selective solid-phase microextraction coating. J Chromatogr A 1365:29–34

    Article  CAS  PubMed  Google Scholar 

  23. Bagheri H, Manouchehri M, Allahdadlalouni M (2017) A magnetic multifunctional dendrimeric coating on a steel fiber for solid phase microextraction of chlorophenols. Microchim Acta 184(7):2201–2209

    Article  CAS  Google Scholar 

  24. Guo H, Chen G, Wu M, Ma J, Jia Q (2017) Preparation of a porous aromatic framework via the Chan-lam reaction: a coating for solid-phase microextraction of antioxidants and preservatives. Microchim Acta 184(11):4409–4416

    Article  CAS  Google Scholar 

  25. Mehrani Z, Ebrahimzadeh H, Aliakbar AR, Asgharinezhad AA (2018) A poly(4-nitroaniline)/poly(vinyl alcohol) electrospun nanofiber as an efficient nanosorbent for solid phase microextraction of diazinon and chlorpyrifos from water and juice samples. Microchim Acta 185:384. https://doi.org/10.1007/s00604-018-2911-6

    Article  CAS  Google Scholar 

  26. Bagheri H, Amanzadeh H, Yamini Y, Masoomi MY, Morsali A, Salar-Amoli J, Hassan J (2018) A nanocomposite prepared from a zinc-based metal-organic framework and polyethersulfone as a novel coating for the headspace solid-phase microextraction of organophosphorous pesticides. Microchim Acta 185(62). https://doi.org/10.1007/s00604-017-2607-3

  27. Wang W, Li Z, Wang W, Zhang L, Zhang S, Wang C, Wang Z (2018) Microextraction of polycyclic aromatic hydrocarbons by using a stainless steel fiber coated with nanoparticles made from a porous aromatic framework. Microchim Acta 185(20). https://doi.org/10.1007/s00604-017-2577-5

  28. Wang R, Li W, Chen Z (2018) Solid phase microextraction with poly (deep eutectic solvent) monolithic column online coupled to HPLC for determination of non-steroidal anti-inflammatory drugs. Anal Chim Acta 1018:111–118

    Article  CAS  PubMed  Google Scholar 

  29. Reyes-Garcés N, Gionfriddo E, Gomez-Ríos GA, Alam MN, Boyaci E, Bojko B, Singh V, Grandy J, Pawliszyn J (2018) Advances in solid phase microextraction and perspective on future directions. Anal Chem 90(1):302–360

    Article  PubMed  Google Scholar 

  30. Zhang S, Yang Q, Yang X, Wang W, Li Z, Zhang L, Wang C, Wang Z (2017) A zeoliticimidazolate framework based nanoporous carbon as a novel fiber coating for solid-phase microextraction of pyrethroid pesticides. Talanta 166:46–53

    Article  CAS  PubMed  Google Scholar 

  31. Saraji M, Jafari MT, Mossaddegh M (2016) Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography–corona discharge ion mobility spectrometric detection. J Chromatogr A 1429:30–39

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Wang W, Zhang S, Li Z, Wang C, Wang Z (2018) Hyper-crosslinked polymer nanoparticles as the solid-phase microextraction fiber coating for the extraction of organochlorines. J Chromatogr A 1556:47–54

    Article  CAS  PubMed  Google Scholar 

  33. Wang F, Liu S, Yang H, Zheng J, Qiu J, Xu J, Tong Y, Zhu F, Ouyang G (2016) Hierarchical graphene coating for highly sensitive solid phase microextraction of organochlorine pesticides. Talanta 160:217–224

    Article  CAS  PubMed  Google Scholar 

  34. Yang H, Qi X, Wang X, Wang X, Wang Q, Qi P, Wang Z, Xu X, Fu Y, Yao S (2018) Regulating immobilizat ion performance of metal-organic coordination polymers through pre-coordination for biosensing. Anal Chim Acta 1005:27–33

    Article  CAS  PubMed  Google Scholar 

  35. Wen Y, Chen L, Li J, Liu D, Chen L (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC-Trend Anal Chem 59:26–41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Agricultural Applied Technology Innovation Project (2018) and the Funds of Shandong “Double Tops” Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhua Ji or Xiao Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Wang, R., Liu, W. et al. A spherical metal-organic coordination polymer for the microextraction of neonicotinoid insecticides prior to their determination by HPLC. Microchim Acta 186, 103 (2019). https://doi.org/10.1007/s00604-018-3210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3210-y

Keywords

Navigation