Skip to main content

Contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO3-x nanodots and 3,3′-diaminobenzidine

Abstract

Logic systems that yield two or more signal outputs in the presence of the input are scarce. A universal logic system consisting of plasmonic MoO3-x nanodots and 3,3′-diaminobenzidine (DAB) for fabrication of visual contrary logic pairs and circuits are presented here. They do not require the use of expensive instrumentation but can be visually read. It is based on the facts that the blue dispersion of MoO3-x nanodots turns to colorless after oxidation, while the colorless reagent DAB is oxidized by various oxidants to generate a brown color. On this basis, the complete contrary logic pairs and circuits such as YES-NOT, AND-NAND, OR-NOR, XOR-XNOR, INH-IMH, and MAJ-MIN can be fabricated. Various oxidants serve as inputs, and absorbances as outputs. A smart logic voting system with “one-vote deny” function is also described that is based on the cascade of MAJ logic circuit and INH logic gate using ascorbic acid (AA) as the superior denier. All the logic operations can visually read due to the appearance of distinct color changes.

Schematic presentation of the contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO3-x nanodots and 3,3′-diaminobenzidine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Badeau BA, Comerford MP, Arakawa CK, Shadish JA, DeForest CA (2018) Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat Chem 10:251–258. https://doi.org/10.1038/NCHEM.2917

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Chen WH, Yu X, Cecconello A, Cecconello A, Sohn YS, Nechushtai R, Willner I (2017) Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH-and metal-ion-dependent DNAzymes as locks. Chem Sci 8:5769–5780. https://doi.org/10.1039/c7sc01765k

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Pu F, Ju E, Ren J, Qu X (2014) Multiconfigurable logic gates based on fluorescence switching in adaptive coordination polymer nanoparticles. Adv Mater 26:1111–1117. https://doi.org/10.1002/adma.201304109

    CAS  Article  PubMed  Google Scholar 

  4. Wang L, Zhu J, Han L, Jin L, Zhu C, Wang E, Dong S (2012) Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano 6:6659–6666. https://doi.org/10.1021/nn300992f

    CAS  Article  PubMed  Google Scholar 

  5. Boulais É, Sawaya NP, Veneziano R, Andreoni A, Banal JL, Kondo T, Mandal S, Lin S, Schlau-Cohen GS, Woodbury NW (2018) Programmed coherent coupling in a synthetic DNA-based excitonic circuit. Nat Mater 17:159–166. https://doi.org/10.1038/NMAT5033

    CAS  Article  PubMed  Google Scholar 

  6. Liu K, Shang C, Wang Z, Qi Y, Miao R, Liu K, Liu T, Fang Y (2018) Non-contact identification and differentiation of illicit drugs using fluorescent films. Nat Commun 9:1695. https://doi.org/10.1038/s41467-018-04119-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Lin X, Liu Y, Deng J, Lyu Y, Qian P, Li Y, Wang S (2018) Multiple advanced logic gates made of DNA-ag nanocluster and the application for intelligent detection of pathogenic bacterial genes. Chem Sci 9:1774–1781. https://doi.org/10.1039/c7sc05246d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Li Y, Sun SJ, Fan L, Hu SF, Huang Y, Zhang K, Nie Z, Yao SZ (2017) Peptide logic circuits based on Chemoenzymatic ligation for programmable cell apoptosis. Angew Chem Int Ed 56:14888–14892. https://doi.org/10.1002/anie.201708327

    CAS  Article  Google Scholar 

  9. Zhou Y, Huang W, He Y (2018) pH-induced silver nanoprism etching-based multichannel colorimetric sensor array for ultrasensitive discrimination of thiols. Sensor Actuat B-Chem 270:187–191. https://doi.org/10.1016/j.snb.2018.05.025

    CAS  Article  Google Scholar 

  10. Huang W, Zhou Y, Deng Y, He Y (2018) A negative feedback loop based on proton-driven in situ formation of plasmonic molybdenum oxide nanosheets. Phys Chem Chem Phys 20:4347–4350. https://doi.org/10.1039/c7cp07745a

    CAS  Article  PubMed  Google Scholar 

  11. De Silva PA, Gunaratne NHQ, Mccoy CP (1993) A molecular photoionic AND gate based on fluorescent signalling. Nature 364:42–44. https://doi.org/10.1038/364042a0

    Article  Google Scholar 

  12. Elstner M, Axthelm J, Schiller A (2014) Sugar-based molecular computing by material implication. Angew Chem Int Ed 53:7339–7343. https://doi.org/10.1002/anie.201403769

    CAS  Article  Google Scholar 

  13. Lilienthal S, Klein M, Orbach R, Willner I, Remacle F, Levine R (2017) Continuous variables logic via coupled automata using a DNAzyme cascade with feedback. Chem Sci 8:2161–2168. https://doi.org/10.1039/c6sc03892a

    CAS  Article  PubMed  Google Scholar 

  14. Erbas-Cakmak S, Kolemen S, Sedgwick AC, Gunnlaugsson T, James TD, Yoon J, Akkaya EU (2018) Molecular logic gates: the past, present and future. Chem Soc Rev 47:2228–2248. https://doi.org/10.1039/c7cs00491e

    CAS  Article  PubMed  Google Scholar 

  15. Turan IS, Gunaydin G, Ayan S, Akkaya EU (2018) Molecular demultiplexer as a terminator automaton. Nat Commun 9:805. https://doi.org/10.1038/s41467-018-03259-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Thubagere AJ, Thachuk C, Berleant J, Johnson RF, Ardelean DA, Cherry KM, Qian L (2017) Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat Commun 8:14373. https://doi.org/10.1038/ncomms14373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Orbach R, Lilienthal S, Klein M, Levine RD, Remacle F, Willner I (2015) Ternary DNA computing using 3× 3 multiplication matrices. Chem Sci 6:1288–1292. https://doi.org/10.1039/c4sc02930e

    CAS  Article  PubMed  Google Scholar 

  18. Fan D, Wang E, Dong S (2017) An intelligent universal system yields double results with half the effort for engineering a DNA “contrary logic pairs” library and various DNA combinatorial logic circuits. Mater Horiz 4:924–931. https://doi.org/10.1039/c7mh00564d

    CAS  Article  Google Scholar 

  19. Zhu J, Li T, Zhang L, Dong S, Wang E (2011) G-quadruplex DNAzyme based molecular catalytic beacon for label-free colorimetric logic gates. Biomater 32:7318–7324. https://doi.org/10.1016/j.biomaterials.2011.06.040

    CAS  Article  Google Scholar 

  20. Xianyu Y, Wang Z, Sun J, Wang X, Jiang X (2014) Colorimetric logic gates through molecular recognition and plasmonic nanoparticles. Small 10:4833–4838. https://doi.org/10.1002/smll.201400479

    CAS  Article  PubMed  Google Scholar 

  21. Yu H, Long D, Huang W (2018) Organic antifreeze discrimination by pattern recognition using nanoparticle array. Sensor Actuat B-Chem 264:164–168. https://doi.org/10.1016/j.snb.2018.02.180

    CAS  Article  Google Scholar 

  22. Huang W, Deng Y, He Y (2017) Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens Bioelectron 91:89–94. https://doi.org/10.1016/j.bios.2016.12.028

    CAS  Article  PubMed  Google Scholar 

  23. Huang W, Zhou Y, Du J, Deng Y, He Y (2018) Versatile visual logic operations based on plasmonic switching in label-free molybdenum oxide nanomaterials. Anal Chem 90:2384–2388. https://doi.org/10.1021/acs.analchem.7b05097

    CAS  Article  PubMed  Google Scholar 

  24. Du J, Zhao M, Huang W, Deng Y, He Y (2018) Visual colorimetric detection of tin (II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate. Anal Bioanal Chem 410:4519–4526. https://doi.org/10.1007/s00216-018-1109-4

    CAS  Article  PubMed  Google Scholar 

  25. Roschzttardtz H, Grillet L, Isaure MP, Conejero G, Ortega R, Curie C, Mari S (2011) Plant cell nucleolus as a hot spot for iron. J Biol Chem 286:27863–27866. https://doi.org/10.1074/jbc.C111.269720

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Herzog V, Fahimi HD (1973) A new sensitive colorimetric assay for peroxidase using 3, 3′-diaminobenzidine as hydrogen donor. Anal Biochem 55:554–562. https://doi.org/10.1016/0003-2697(73)90144-9

    CAS  Article  PubMed  Google Scholar 

  27. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84. https://doi.org/10.1080/10643380500326564

    CAS  Article  Google Scholar 

  28. Enami S, Sakamoto Y, Colussi AJ (2014) Fenton chemistry at aqueous interfaces. P Natl Acad Sci U S A 111:623–628. https://doi.org/10.1073/pnas.1314885111

    CAS  Article  Google Scholar 

  29. Mailloux S, Guz N, Zakharchenko A, Minko S, Katz E (2014) Majority and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and interfaced with bioelectronic systems. J Phys Chem B118:6775–6784. https://doi.org/10.1021/jp504057u

    CAS  Article  Google Scholar 

  30. Imre A, Csaba G, Ji L, Orlov A, Bernstein GW (2006) Majority logic gate for magnetic quantum-dot cellular automata. Science 311:205–208. https://doi.org/10.1126/science.1120506

    CAS  Article  PubMed  Google Scholar 

  31. Bezverkhyy I, Popova E, Geoffroy N, Herbst F, Bellat JP (2016) Preparation of magnetic composites of MIL-53 (Fe) or MIL-100 (Fe) via partial transformation of their framework into gamma-Fe2O3. J Mater Chem A 4:8141–8148. https://doi.org/10.1039/c6ta00383d

    CAS  Article  Google Scholar 

  32. Badeau BA, Comerford MP, Arakawa CK, Shadish JA, DeForest CA (2004) Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat Chem 10:251–258. https://doi.org/10.1038/NCHEM.2917

    Article  Google Scholar 

Download references

Acknowledgements

The support of this research by the National Natural Science Foundation of China (Grant No. 21705134), Longshan academic talent research supporting program of SWUST (Grant No. 18LZX204 and 17LZX449), and Postgraduate Innovation Fund Project by Southwest University of Science and Technology (Grant No. 18ycx072) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 485 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Wang, J., Du, J. et al. Contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO3-x nanodots and 3,3′-diaminobenzidine. Microchim Acta 186, 79 (2019). https://doi.org/10.1007/s00604-018-3190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3190-y

Keywords

  • MoO3-x nanomaterials
  • Colorimetry
  • Visualization
  • Molecular computing
  • Plasmonic switch
  • One-vote deny
  • Ascorbic acid
  • Chromogenic substrate
  • Oxidants
  • Dual output logic gate