Skip to main content
Log in

Detection of microRNA using a polydopamine mediated bimetallic SERS substrate and a re-circulated enzymatic amplification system

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A surface-enhanced Raman scattering (SERS) method is described for the determination of microRNA that is associated with various forms of cancer. The substrate consists of functionalized gold-silver bimetallic structure, and the sensitivity is strongly enhanced by making use of a re-circulated enzymatic amplification system (REAS). Poly-dopamine acts as both a reductant and a protective of the substrates. It was employed to link the gold core and silver satellite. The unique “hot spots” consisting of a Au@PDA@Ag nanocomposite improve the Raman signal and sensitivity. The reductive feature of PDA can prevent the susceptible oxidation of metallic silver to maintain the high Raman activity. To improve the sensitivity of the assays, a re-circulated enzymatic amplification system was developed in which the nicking endonuclease triggers the nucleic acid reaction system to enter an amplified cycle. By integrating the bimetallic nanosubstrate and magnetic separation into the REAS, microRNA can be detected by SERS (best at the Raman band of 1586 cm−1) with a limit of detection as low as 0.2 fM. In our perception, the assay provides an exciting new avenue to study the expression of tumor genes. Thus, it holds vast promise in cancer diagnosis.

Schematic presentation of the SERS method based on poly-dopamine mediated bimetallic SERS substrate and re-circulated enzymatic amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10(8):472–484

    Article  CAS  Google Scholar 

  2. Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11(11):1737–1744

    Article  CAS  Google Scholar 

  3. Thomson JM, Parker J, Perou CM, Hammond SM (2004) A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1(1):47–53

    Article  CAS  Google Scholar 

  4. Zhang H, Fu CP, Yi Y, Zhou XD, Zhou CH, Ying GP, Shen YP, Zhu YF (2018) A magnetic-based SERS approach for highly sensitive and reproducible detection of cancer-related serum microRNAs. Anal Methods 10:624–633

    Article  CAS  Google Scholar 

  5. Zhou W, Tian YF, Yin BC, Ye BC (2017) Simultaneous surface-enhanced Raman spectroscopy detection of multiplexed MicroRNA biomarkers. Anal Chem 89(11):6120–6128

    Article  CAS  Google Scholar 

  6. Driskell JD, Tripp RA (2010) Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem Commun 46(19):3298–3300

    Article  CAS  Google Scholar 

  7. Su J, Wang D, Norbel L, Shen J, Zhao Z, Dou Y, Peng T, Shi J, Mathur S, Fan C, Song S (2017) Multicolor gold-silver Nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection. Anal Chem 89(4):2531–2538

    Article  CAS  Google Scholar 

  8. Wang Y, Yan B, Chen L (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428

    Article  CAS  Google Scholar 

  9. Zhu T, Hu Y, Yang K, Dong N, Yu M, Jiang N (2017) A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Microchim Acta 185(1)

  10. Yang K, Hu Y, Dong N (2016) A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol. Biosens Bioelectron 80:373–377

    Article  CAS  Google Scholar 

  11. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957–2976

    Article  CAS  Google Scholar 

  12. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250

    Article  CAS  Google Scholar 

  13. Li GC, Zhang YL, Jiang J, Luo Y, Lei DY (2017) Metal-substrate-mediated Plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement. ACS Nano 11(3):3067–3080

    Article  CAS  Google Scholar 

  14. Yang M, Alvarez-Puebla R, Kim HS, Aldeanueva-Potel P, Liz-Marzan LM, Kotov NA (2010) SERS-active gold lace nanoshells with built-in hotspots. Nano Lett 10(10):4013–4019

    Article  CAS  Google Scholar 

  15. Zhao Y, Yang Y, Luo Y, Yang X, Li M, Song Q (2015) Double detection of mycotoxins based on SERS labels embedded ag@au Core–Shell nanoparticles. ACS Appl Mater Interfaces 7(39):21780–21786

    Article  CAS  Google Scholar 

  16. Yang Y, Liu J, Fu ZW, Qin D (2014) Galvanic replacement-free deposition of au on ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc 136(23):8153–8156

    Article  CAS  Google Scholar 

  17. Cong Y, Xia T, Zou M, Li Z, Peng B, Guo D, Deng Z (2014) Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/ag nanocomposite particles with enhanced antibacterial activities. J Mater Chem B 2(22):3450–3461

    Article  CAS  Google Scholar 

  18. Lee H, Dellatore S, Miller W, Messersmith P (2017) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430

    Article  Google Scholar 

  19. Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H (2012) Non-covalent self-assembly and covalent polymerization co-contribute to Polydopamine formation. Adv Funct Mater 22(22):4711–4717

    Article  CAS  Google Scholar 

  20. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2012) Elucidating the structure of poly(dopamine). Langmuir 28(15):6428–6435

    Article  CAS  Google Scholar 

  21. Ham HO, Liu Z, Lau KHA, Lee H, Messersmith PB (2011) Facile DNA immobilization on surfaces through a catecholamine polymer. Angew Chem Int Ed 50(3):732–736

    Article  CAS  Google Scholar 

  22. Lin LS, Cong ZX, Cao JB, Ke KM, Peng QL, Gao JH, Yang HH, Liu G, Chen XY (2014) Multifunctional Fe3O4@Polydopamine Core-Shell nanocomposites for intracellular mRNA detection and imaging-guided Photothermal therapy. ACS Nano 8(4):3876–3883

    Article  CAS  Google Scholar 

  23. Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21(4):431–434

    Article  CAS  Google Scholar 

  24. Yang JR, Tang M, Diao W, Cheng WB, Zhang Y, Yan YR (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183(11):3061–3067

    Article  CAS  Google Scholar 

  25. Sang Y, Xu YJ, Xu LL, Cheng W, Li XM, Wu JL, Ding SJ (2017) Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease. Microchim Acta 184(7):2465–2471

    Article  CAS  Google Scholar 

  26. Ziegler C, Eychmüller A (2011) Seeded growth synthesis of uniform gold nanoparticles with diameters of 15−300 nm. J Phys Chem C 115(11):4502–4506

    Article  CAS  Google Scholar 

  27. Yang K, Hu Y, Dong N, Zhu G, Zhu T, Jiang N (2017) A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens Bioelectron 94:286–291

    Article  CAS  Google Scholar 

  28. Xu W, Xue X, Li T, Zeng H, Liu X (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48(37):6849–6852

    Article  CAS  Google Scholar 

  29. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  Google Scholar 

  30. Borghei YS, Hosseini M, Ganjali MR, Ju H (2018) Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles. Microchim Acta 185(6):286

    Article  Google Scholar 

  31. Zheng J, Bai JHQF, Li JS, Li YH, Yang JF, Yang RH (2015) DNA-templated in situ growth of AgNPs on SWNTs: a new approach for highly sensitive SERS assay of microRNA. Chem Commun 51(2015):6552–6555

    Article  CAS  Google Scholar 

  32. Oishi M, Sugiyama S (2016) An efficient particle-based DNA circuit system: catalytic disassembly of DNA/PEG-modified gold nanoparticle-magnetic bead composites for colorimetric detection of miRNA. Small 12(37):5153–5158

    Article  CAS  Google Scholar 

  33. Rafiee-Pour HA, Behpour M, Keshavarz M (2016) A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron 77:202–207

    Article  CAS  Google Scholar 

  34. Roy S, Soh JH, Gao Z (2011) A microfluidic-assisted microarray for ultrasensitive detection of miRNA under an optical microscope. Lab Chip 11(11):1886–1894

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by National Natural Science Foundation of China (NSFC) (Grant nos. 21273083 and U1732146) and the Project under Scientific and Technological Planning Grant nos. 201805010002 by Guangzhou City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Hu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 4.08 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Hu, Y., Wei, W. et al. Detection of microRNA using a polydopamine mediated bimetallic SERS substrate and a re-circulated enzymatic amplification system. Microchim Acta 186, 65 (2019). https://doi.org/10.1007/s00604-018-3174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3174-y

Keywords

Navigation