Manganese-doped zinc oxide hollow balls for chemiresistive sensing of acetone vapors


Both pure and Mn(II)-doped ZnO hollow structures were synthesized by a solvothermal reaction, and their phase structures, morphologies and elemental composition were characterized. SEM and TEM observations show the pure ZnO and the Mn(II)-doped ZnO balls to possess similar hollow structure with a particle size of about 1.5 μm. Their sensing properties were investigated, and the composite containing 1 atom% of Mn(II) (1% Mn-ZnO) is found be display the highest selectivity for acetone. The detection limit is 100 ppm acetone at 234 °C which is 4.6 times lower than that of the pure ZnO. In addition, the response time is shorter.

ZnO and Mn-doped ZnO hollow balls were prepared by a hydrothermal method, and their gas-sensing properties were investigated. Zinc(II) oxide doped with 1 atom% Mn(II) demonstrated an outstanding sensing behavior towards acetone vapors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Yang X, Hao X, Liu T, Liu F, Wang B, Ma C, Liang X, Yang C, Zhu H, Zheng J, He T, Lu G (2018) CeO2-based mixed potential type acetone sensor using La1-xSrxCoO3 sensing electrode. Sensors Actuators B Chem 269:118–126

    CAS  Article  Google Scholar 

  2. 2.

    Puchalska P, Crawford PA (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25(2):262–284

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Spanel P, Smith D (2011) Progress in SIFT-MS: breath analysis and other applications. Mass Spectrom Rev 30(2):236–267

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Smith D, Spanel P (2011) Ambient analysis of trace compounds in gaseous media by SIFT-MS. Analyst 136(10):2009–2032

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Guntner AT, Sievi NA, Theodore SJ, Gulich T, Kohler M, Pratsinis SE (2017) Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles. Anal Chem 89(19):10578–10584

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Guntner AT, Pineau NJ, Mochalski P, Wiesenhofer H, Agapiou A, Mayhew CA, Pratsinis SE (2018) Sniffing entrapped humans with sensor arrays. Anal Chem 90(8):4940–4945

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON Jr, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185(4):213

    Article  CAS  Google Scholar 

  8. 8.

    Dey A (2018) Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B 229:206–217

    CAS  Article  Google Scholar 

  9. 9.

    Liu C, Zhao L, Wang B, Sun P, Wang Q, Gao Y, Liang X, Zhang T, Lu G (2017) Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit. J Colloid Interface Sci 495:207–215

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Singh AK, Thool GS, Bangal PR, Madhavendra SS, Singh SP (2014) Low temperature Mn doped ZnO Nanorod Array: synthesis and its photoluminescence behavior. Ind Eng Chem Res 53(22):9383–9390

    CAS  Article  Google Scholar 

  11. 11.

    R S G MN, Patil VL, S P CM, Kawasaki S, Patil PS, Hayakawa Y (2018) Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sensors Actuators B Chem 255:672–683

    Article  CAS  Google Scholar 

  12. 12.

    Mao Y, Ma S, Li X, Wang C, Li F, Yang X, Zhu J, Ma L (2014) Effect of Mn doping on the microstructures and sensing properties of ZnO nanofibers. Appl Surf Sci 298:109–115

    CAS  Article  Google Scholar 

  13. 13.

    Suematsu K, Watanabe K, Tou A, Sun Y, Shimanoe K (2018) Ultraselective toluene-gas sensor: Nanosized gold loaded on zinc oxide nanoparticles. Anal Chem 90(3):1959–1966

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Ghosh S, Roychaudhuri C, Bhattacharya R, Saha H, Mukherjee N (2014) Palladium-silver-activated ZnO surface: highly selective methane sensor at reasonably low operating temperature. ACS Appl Mater Interfaces 6(6):3879–3887

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Renitta A, Vijayalakshmi K (2017) High performance hydrogen sensor based on Mn implanted ZnO nanowires array fabricated on ITO substrate. Mater Sci Eng C 77:245–256

    CAS  Article  Google Scholar 

  16. 16.

    Han N, Liu H, Wu X, Li D, Chai L, Chen Y (2011) Pure and Sn-, Ga- and Mn-doped ZnO gas sensors working at different temperatures for formaldehyde, humidity, NH3, toluene and CO. Appl Phys A 104(2):627–633

    CAS  Article  Google Scholar 

  17. 17.

    Qu F, Shang W, Wang D, Du S, Thomas T, Ruan S, Yang M (2018) Coordination polymer-derived multishelled mixed Ni-co oxide microspheres for robust and selective detection of xylene. ACS Appl Mater Interfaces 10(17):15314–15321

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Putri NA, Fauzia V, Iwan S, Roza L, Umar AA, Budi S (2018) Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates. Appl Surf Sci 439:285–297

    CAS  Article  Google Scholar 

  19. 19.

    Yan X, Hu D, Li H, Li L, Chong X, Wang Y (2011) Nanostructure and optical properties of M doped ZnO (M=Ni, Mn) thin films prepared by sol–gel process. Phys B Condens Matter 406(20):3956–3962

    CAS  Article  Google Scholar 

  20. 20.

    Stefan M, Ghica D, Nistor SV, Maraloiu AV, Plugaru R (2017) Mn2+ ions distribution in doped sol–gel deposited ZnO films. Appl Surf Sci 396:1880–1889

    CAS  Article  Google Scholar 

  21. 21.

    Oo WMH, Saraf LV, Engelhard MH, Shutthanandan V, Bergman L, Huso J, McCluskey MD (2009) Suppression of conductivity in Mn-doped ZnO thin films. J Appl Phys 105(1):013715

    Article  CAS  Google Scholar 

  22. 22.

    Sankar Ganesh R, Durgadevi E, Navaneethan M, Patil VL, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil PS, Hayakawa Y (2017) Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J Alloys Compd 721:182–190

    CAS  Article  Google Scholar 

  23. 23.

    Li JH, Shen DZ, Zhang JY, Zhao DX, Li BS, Lu YM, Liu YC, Fan XW (2006) Magnetism origin of Mn-doped ZnO nanoclusters. J Magn Magn Mater 302(1):118–121

    CAS  Article  Google Scholar 

  24. 24.

    Ponnusamy R, Selvaraj SC, Ramachandran M, Murugan P, Nambissan PMG, Sivasubramanian D (2016) Diverse spectroscopic studies and first-principles investigations of the zinc vacancy mediated ferromagnetism in Mn-doped ZnO nanoparticles. Cryst Growth Des 16(7):3656–3668

    CAS  Article  Google Scholar 

  25. 25.

    Patterson S, Arora P, Price P, Dittmar JW, Das VK, Pink M, Stein B, Morgan DG, Losovyj Y, Koczkur KM, Skrabalak SE, Bronstein LM (2017) Oriented attachment is a major control mechanism to form nail-like Mn-doped ZnO nanocrystals. Langmuir 33(51):14709–14717

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Gallegos MV, Peluso MA, Thomas H, Damonte LC, Sambeth JE (2016) Structural and optical properties of ZnO and manganese-doped ZnO. J Alloys Compd 689:416–424

    CAS  Article  Google Scholar 

  27. 27.

    Chen W, Wang J, Wang M-r (2007) Influence of doping concentration on the properties of ZnO:Mn thin films by sol–gel method. Vacuum 81(7):894–898

    CAS  Article  Google Scholar 

  28. 28.

    Hu D, Liu X, Deng S, Liu Y, Feng Z, Han B, Wang Y, Wang Y (2014) Structural and optical properties of Mn-doped ZnO nanocrystalline thin films with the different dopant concentrations. Physica E 61:14–22

    CAS  Article  Google Scholar 

  29. 29.

    Yoo R, Lee D, Cho S, Lee W (2018) Doping effect on the sensing properties of ZnO nanoparticles for detection of 2-chloroethyl ethylsulfide as a mustard simulant. Sensors Actuators B Chem 254:1242–1248

    CAS  Article  Google Scholar 

  30. 30.

    Ilyas U, Rawat RS, Wang Y, Tan TL, Lee P, Chen R, Sun HD, Li F, Zhang S (2012) Alteration of Mn exchange coupling by oxygen interstitials in ZnO:Mn thin films. Appl Surf Sci 258(17):6373–6378

    CAS  Article  Google Scholar 

  31. 31.

    Cao HT, Pei ZL, Gong J, Sun C, Huang RF, Wen LS (2004) Preparation and characterization of Al and Mn doped ZnO (ZnO: (Al, Mn)) transparent conducting oxide films. J Solid State Chem 177(4–5):1480–1487

    CAS  Article  Google Scholar 

  32. 32.

    Wang C, Cui X, Liu J, Zhou X, Cheng X, Sun P, Hu X, Li X, Zheng J, Lu G (2015) Design of superior ethanol gas sensor based on al-doped NiO nanorod-flowers. ACS Sens 1(2):131–136

    Article  CAS  Google Scholar 

  33. 33.

    Zhang R, Liu X, Zhou T, Wang L, Zhang T (2018) Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor. J Colloid Interface Sci 524:76–83

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Al-Hardan NH, Abdullah MJ, Abdul Aziz A, Ahmad H, Low LY (2010) ZnO thin films for VOC sensing applications. Vacuum 85(1):101–106

    CAS  Article  Google Scholar 

  35. 35.

    Lee C-Y, Chiang C-M, Wang Y-H, Ma R-H (2007) A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sensors Actuators B Chem 122(2):503–510

    CAS  Article  Google Scholar 

  36. 36.

    Nayak AK, Ghosh R, Santra S, Guha PK, Pradhan D (2015) Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds. Nanoscale 7(29):12460–12473

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Shi J, Hu G, Sun Y, Geng M, Wu J, Liu Y, Ge M, Tao J, Cao M, Dai N (2011) WO3 nanocrystals: synthesis and application in highly sensitive detection of acetone. Sensors Actuators B Chem 156(2):820–824

    CAS  Article  Google Scholar 

  38. 38.

    Feng C, Li X, Ma J, Sun Y, Wang C, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of In2O3–WO3 heterojunction nanofibers. Sensors Actuators B Chem 209:622–629

    CAS  Article  Google Scholar 

  39. 39.

    Güntner AT, Pineau NJ, Chie D, Krumeich F, Pratsinis SE (2016) Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. J Mater Chem B 4(32):5358–5366

    Article  CAS  Google Scholar 

  40. 40.

    Wang X-j, Wang W, Liu Y-L (2012) Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO. Sensors Actuators B Chem 168:39–45

    CAS  Article  Google Scholar 

  41. 41.

    Wang W, Tian Y, Wang X, He H, Xu Y, He C, Li X (2013) Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J Mater Sci 48(8):3232–3238

    CAS  Article  Google Scholar 

  42. 42.

    Song P, Wang Q, Yang Z (2012) Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction. Mater Lett 86:168–170

    CAS  Article  Google Scholar 

  43. 43.

    Huang J, Wu Y, Gu C, Zhai M, Yu K, Yang M, Liu J (2010) Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property. Sensors Actuators B Chem 146(1):206–212

    CAS  Article  Google Scholar 

  44. 44.

    Liu L, Li S, Zhuang J, Wang L, Zhang J, Li H, Liu Z, Han Y, Jiang X, Zhang P (2011) Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sensors Actuators B Chem 155(2):782–788

    CAS  Article  Google Scholar 

  45. 45.

    Zhou X, Cheng X, Zhu Y, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2018) Ordered porous metal oxide semiconductors for gas sensing. Chin Chem Lett 29(3):405–416

    CAS  Article  Google Scholar 

  46. 46.

    Ahmed F, Arshi N, Anwar MS, Danish R, Koo BH (2013) Mn-doped ZnO nanorod gas sensor for oxygen detection. Curr Appl Phys 13:S64–S68

    Article  Google Scholar 

  47. 47.

    Lee WI, Bonyani M, Lee JK, Lee C, Choi S-B (2018) Volatile organic compound sensing properties of MoO3–ZnO core–shell nanorods. Curr Appl Phys 18:S60–S67

    Article  Google Scholar 

  48. 48.

    Mhlongo GH, Shingange K, Tshabalala ZP, Dhonge BP, Mahmoud FA, Mwakikunga BW, Motaung DE (2016) Room temperature ferromagnetism and gas sensing in ZnO nanostructures: influence of intrinsic defects and Mn, Co, Cu doping. Appl Surf Sci 390:804–815

    CAS  Article  Google Scholar 

  49. 49.

    Sivalingam D, Gopalakrishnan JB, Rayappan JBB (2012) Structural, morphological, electrical and vapour sensing properties of Mn doped nanostructured ZnO thin films. Sensors Actuators B Chem 166-167:624–631

    CAS  Article  Google Scholar 

  50. 50.

    Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sensors Actuators A Phys 267:242–261

    CAS  Article  Google Scholar 

  51. 51.

    Li Y, Wang S, Hao P, Tian J, Cui H, Wang X (2018) Soft-templated formation of double-shelled ZnO hollow microspheres for acetone gas sensing at low concentration/near room temperature. Sensors Actuators B Chem 273:751–759

    CAS  Article  Google Scholar 

  52. 52.

    Liu X, Ma T, Xu Y, Sun L, Zheng L, Schmidt OG, Zhang J (2018) Rolled-up SnO2 nanomembranes: a new platform for efficient gas sensors. Sensors Actuators B Chem 264:92–99

    CAS  Article  Google Scholar 

Download references


This work is supported by Key Program of the Chinese Academy of Sciences through Grant KFZD-SW-320, NSF China through Grant 21471147. M. Yang would like to thank for the Ningbo 3315 program.

Author information



Corresponding authors

Correspondence to Chunjie Jiang or Fengdong Qu or Minghui Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 1057 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Shang, W., Zhang, B. et al. Manganese-doped zinc oxide hollow balls for chemiresistive sensing of acetone vapors. Microchim Acta 186, 44 (2019).

Download citation


  • ZnO
  • Mn-doped ZnO
  • Hollow balls
  • Gas sensor
  • Acetone vapors