Skip to main content
Log in

Orthogonal gas sensor arrays by chemoresistive material design

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gas sensor arrays often lack discrimination power to different analytes and robustness to interferants, limiting their success outside of research laboratories. This is primarily due to the widely sensitive (thus weakly-selective) nature of the constituent sensors. Here, the effect of orthogonality on array accuracy and precision by selective sensor design is investigated. Therefore, arrays of (2–5) selective and non-selective sensors are formed by systematically altering array size and composition. Their performance is evaluated with 60 random combinations of ammonia, acetone and ethanol at ppb to low ppm concentrations. Best analyte predictions with high coefficients of determination (R2) of 0.96 for ammonia, 0.99 for acetone and 0.88 for ethanol are obtained with an array featuring high degree of orthogonality. This is achieved by using distinctly selective sensors (Si:MoO3 for ammonia and Si:WO3 for acetone together with Si:SnO2) that improve discrimination power and stability of the regression coefficients. On the other hand, arrays with collinear sensors (Pd:SnO2, Pt:SnO2 and Si:SnO2) hardly improve gas predictions having R2 of 0.01, 0.86 and 0.28 for ammonia, acetone and ethanol, respectively. Sometimes they even exhibited lower coefficient of determination than single sensors as a Si:MoO3 sensor alone predicts ammonia better with a R2 of 0.68.

Conventional arrays (red) with weakly-selective sensors span a significantly smaller volume in the analyte space than arrays containing distinctly-selective sensors (orthogonal array, green). Orthogonal arrays feature better accuracy and precision than conventional arrays in mixtures of ammonia, acetone and ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881):352–355. https://doi.org/10.1038/299352a0

    Article  CAS  PubMed  Google Scholar 

  2. Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108(2):705–725. https://doi.org/10.1021/cr068121q

    Article  CAS  PubMed  Google Scholar 

  3. Ragazzo-Sanchez JA, Chalier P, Chevalier D, Ghommidh C (2006) Electronic nose discrimination of aroma compounds in alcoholised solutions. Sensors Actuators B Chem 114(2):665–673. https://doi.org/10.1016/j.snb.2005.05.032

    Article  CAS  Google Scholar 

  4. Phillips M (2005) Can the electronic nose really sniff out lung cancer? Am J Respir Crit Care Med 172(8):1060; author reply 1060-1061–1061. https://doi.org/10.1164/ajrccm.172.8.959

    Article  PubMed  Google Scholar 

  5. Pizzini A, Filipiak W, Wille J, Ager C, Wiesenhofer H, Kubinec R, Blaško J, Tschurtschenthaler C, Mayhew CA, Weiss G, Bellmann-Weiler R (2018) Analysis of volatile organic compounds in the breath of patients with stable or acute exacerbation of chronic obstructive pulmonary disease. J Breath Res 12(3):036002. https://doi.org/10.1088/1752-7163/aaa4c5

    Article  PubMed  Google Scholar 

  6. Güntner AT, Koren V, Chikkadi K, Righettoni M, Pratsinis SE (2016) E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens 1(5):528–535. https://doi.org/10.1021/acssensors.6b00008

    Article  CAS  Google Scholar 

  7. Sundgren H, Winquist F, Lukkari I, Lundstrom I (1991) Artificial neural networks and gas sensor arrays - quantification of individual components in a gas-mixture. Meas Sci Technol 2(5):464–469. https://doi.org/10.1088/0957-0233/2/5/008

    Article  CAS  Google Scholar 

  8. Carey WP, Beebe KR, Sanchez E, Geladi P, Kowalski BR (1986) Chemometric analysis of multisensor arrays. Sensors Actuators 9(3):223–234. https://doi.org/10.1016/0250-6874(86)80023-3

    Article  CAS  Google Scholar 

  9. Pearce TC, Schiffman SS, Nagle HT, Gardner JW (2003) Handbook of machine olfaction: electronic nose technology. WiILEY-VCH, Weinheim. https://doi.org/10.1002/3527601597

  10. Joshi N, Hayasaka T, Liu YM, Liu HL, Oliveira ON, Lin LW (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185(4):213. https://doi.org/10.1007/s00604-018-2750-5

    Article  CAS  Google Scholar 

  11. Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE (2012) Breath acetone monitoring by portable Si:WO3 gas sensors. Anal Chim Acta 738:69–75. https://doi.org/10.1016/j.aca.2012.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Güntner AT, Pineau NJ, Chie D, Krumeich F, Pratsinis SE (2016) Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. J Mater Chem B 4(32):5358–5366. https://doi.org/10.1039/C6TB01335J

    Article  CAS  PubMed  Google Scholar 

  13. Güntner AT, Righettoni M, Pratsinis SE (2016) Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis. Sens Actuators B Chem 223:266–273. https://doi.org/10.1016/j.snb.2015.09.094

    Article  CAS  Google Scholar 

  14. Güntner AT, Sievi NA, Theodore SJ, Gulich T, Kohler M, Pratsinis SE (2017) Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles. Anal Chem 89(19):10578–10584. https://doi.org/10.1021/acs.analchem.7b02843

    Article  CAS  PubMed  Google Scholar 

  15. Güntner AT, Pineau NJ, Mochalski P, Wiesenhofer H, Agapiou A, Mayhew CA, Pratsinis SE (2018) Sniffing entrapped humans with sensor arrays. Anal Chem 90(8):4940–4945. https://doi.org/10.1021/acs.analchem.8b00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mädler L, Roessler A, Pratsinis SE, Sahm T, Gurlo A, Barsan N, Weimar U (2006) Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens Actuators B Chem 114(1):283–295. https://doi.org/10.1016/j.snb.2005.05.014

    Article  CAS  Google Scholar 

  17. Tricoli A, Graf M, Pratsinis SE (2008) Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater 18(13):1969–1976. https://doi.org/10.1002/adfm.200700784

    Article  CAS  Google Scholar 

  18. Mädler L, Sahm T, Gurlo A, Grunwaldt JD, Barsan N, Weimar U, Pratsinis SE (2006) Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J Nanopart Res 8(6):783–796. https://doi.org/10.1007/s11051-005-9029-6

    Article  CAS  Google Scholar 

  19. Davies S, Spanel P, Smith D (1997) Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 52(1):223–228. https://doi.org/10.1038/ki.1997.324

    Article  CAS  PubMed  Google Scholar 

  20. Diskin AM, Spanel P, Smith D (2003) Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days. Physiol Meas 24(1):107–119. https://doi.org/10.1088/0967-3334/24/1/308

    Article  PubMed  Google Scholar 

  21. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, Cambridge

    Google Scholar 

  22. James G, Witten D, Hastie T, Tishirani R (2013) An introduction to statistical learning. Springer, Heidelberg. https://doi.org/10.1007/978-1-4614-7138-7

    Book  Google Scholar 

  23. Pratsinis SE (2010) Aerosol-based technologies in nanoscale manufacturing: from functional materials to devices through core chemical engineering. AICHE J 56(12):3028–3035. https://doi.org/10.1002/aic.12478

    Article  CAS  Google Scholar 

  24. Gardner JW (1989) A diffusion-reaction model of electrical-conduction in tin oxide gas sensors. Semicond Sci Technol 4(5):345–350. https://doi.org/10.1088/0268-1242/4/5/003

    Article  CAS  Google Scholar 

  25. van den Broek J, Güntner AT, Pratsinis SE (2018) Highly selective and rapid breath isoprene sensing enabled by activated alumina filter. ACS Sens 3(3):677–683. https://doi.org/10.1021/acssensors.7b00976

    Article  CAS  PubMed  Google Scholar 

  26. Güntner AT, Abegg S, Wegner K, Pratsinis SE (2018) Zeolite membranes for highly selective formaldehyde sensors. Sens Actuators B Chem 257:916–923. https://doi.org/10.1016/j.snb.2017.11.035

    Article  CAS  Google Scholar 

  27. McCartney MM, Zrodnikov Y, Fung AG, LeVasseur MK, Pedersen JM, Zamuruyev KO, Aksenov AA, Kenyon NJ, Davis CE (2017) An easy to manufacture micro gas preconcentrator for chemical sensing applications. ACS Sens 2(8):1167–1174. https://doi.org/10.1021/acssensors.7b00289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Itoh T, Miwa T, Tsuruta A, Akamatsu T, Izu N, Shin W, Park J, Hida T, Eda T, Setoguchi Y (2016) Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns. Sensors 16(11). https://doi.org/10.3390/s16111891

  29. Anderson JC (2015) Measuring breath acetone for monitoring fat loss: review. Obesity 23(12):2327–2334. https://doi.org/10.1002/oby.21242

    Article  CAS  PubMed  Google Scholar 

  30. Smith D, Turner C, Spanel P (2007) Volatile metabolites in the exhaled breath of healthy volunteers: their levels and distributions. J Breath Res 1(1):014004. https://doi.org/10.1088/1752-7155/1/1/014004

    Article  CAS  PubMed  Google Scholar 

  31. McAleer JF, Moseley PT, Norris JOW, Williams DE, Taylor P, Tofield BC (1987) Tin oxide based gas sensors. Mater Chem Phys 17(6):577–583. https://doi.org/10.1016/0254-0584(87)90017-4

    Article  CAS  Google Scholar 

  32. Gardner JW, Boilot P, Hines EL (2005) Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sens Actuators B Chem 106(1):114–121. https://doi.org/10.1016/j.snb.2004.05.043

    Article  CAS  Google Scholar 

  33. Olive DJ (2017) Linear regression. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-55252-1

    Book  Google Scholar 

  34. Harrell FE (2001) Regression Modeling Strategies. Springer series in statistics. Springer, Heidelberg. https://doi.org/10.1007/978-1-4757-3462-1

    Book  Google Scholar 

  35. King G (1986) How not to lie with statistics - avoiding common mistakes in quantitative political-science. Am J Polit Sci 30(3):666–687. https://doi.org/10.2307/2111095

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Swiss National Science Foundation (Grant No.170729 & 159763) and by an ETH Research Grant (No. ETH-21 18-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas T. Güntner.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 5.86 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineau, N.J., Kompalla, J.F., Güntner, A.T. et al. Orthogonal gas sensor arrays by chemoresistive material design. Microchim Acta 185, 563 (2018). https://doi.org/10.1007/s00604-018-3104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3104-z

Keywords

Navigation