Skip to main content
Log in

Immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide for selective extraction of phosphoproteins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sorbent for selective extraction of phosphoproteins was obtained by immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide (CeEGO). The resulting composites exhibit an adsorption capacity of 981 mg g−1 for β-casein due to the synergistic effect of metal-affinity interaction between Ce(IV) and phosphate groups and π-stacking interaction between the polyoxometalate framework and the phosphate groups. The results of LC-MS and SDS-PAGE analysis show that the CeEGO composites can be applied to the extraction of phosphoproteins from protein mixture, and as little as 50 μg mL−1 of the phosphoprotein β-casein can be detected by SDS-PAGE. It was also applied to the extraction of β-casein from spiked biological samples such as drinking milk, whole blood and swine heart tissue extract.

An efficient sorbent is obtained by immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide (CeEGO). The resulting composites exhibit highly selective capture capacity towards phosphoproteins due to the synergistic effect of metal-affinity interaction between Ce(IV) and phosphate groups and π-stacking interaction between the polyoxometalate framework and the phosphate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banks RE, Dunn MJ, Hochstrasser DF, Sanchez JC, Blackstock W, Pappin DJ, Selby PJ (2000) Proteomics: new perspectives, new biomedical opportunities. Lancet 356:1749–1756

    Article  CAS  Google Scholar 

  2. Hwang L, Ayaz-Guner S, Gregorich ZR, Cai W, Valeja SG, Jin S, Ge Y (2015) Specific enrichment of phosphoproteins using functionalized multivalent nanoparticles. J Am Chem Soc 137:2432–2435

    Article  CAS  Google Scholar 

  3. Ashman K, López Villar E (2009) Phosphoproteomics and cancer research. Clin Transl Oncol 11:356–362

    Article  CAS  Google Scholar 

  4. Di Domenico F, Sultana R, Barone E, Perluigi M, Cini C, Mancuso C, Cai J, Pierce WM, Butterfield DA (2011) Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects. J Proteome 74:1091–1103

    Article  Google Scholar 

  5. Jiang J, Sun X, She X, Li J, Li Y, Deng C, Duan G (2018) Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides. Microchim Acta 185:309

    Article  Google Scholar 

  6. Zhang L, Gan Y, Sun H, Yu B, Jin X, Zhang R, Zhang W, Zhang L (2016) Magnetic mesoporous carbon composites incorporating hydrophilic metallic nanoparticles for enrichment of phosphopeptides prior to their determination by MALDI-TOF mass spectrometry. Microchim Acta 184:547–555

    Article  Google Scholar 

  7. Wang ZG, Lv N, Bi WZ, Zhang JL, Ni JZ (2015) Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS Appl Mater Interfaces 7:8377–8392

    Article  CAS  Google Scholar 

  8. Bonomi R, Scrimin P, Mancin F (2010) Phosphate diesters cleavage mediated by Ce(IV) complexes self-assembled on gold nanoparticles. Org Biomol Chem 8:2622–2626

    Article  CAS  Google Scholar 

  9. Li Y, Qi DW, Deng CH, Yang PY, Zhang XM (2008) Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of Phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res 7:1767–1777

    Article  CAS  Google Scholar 

  10. Tan S, Wang J, Han Q, Liang Q, Ding M (2018) A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides. Microchim Acta 185:316

    Article  Google Scholar 

  11. He YT, Liu W, Chen L, Lin G, Xiao Q, Gao CL, Wu JL, Lin ZA (2017) Facile synthesis of Ti4+-immobilized affinity silica nanoparticles for the highly selective enrichment of intact phosphoproteins. J Sep Sci 40:1516–1523

    Article  CAS  Google Scholar 

  12. Fei RH, Zhang TT, Huang Y, Hu YG (2017) Highly selective enrichment of phosphorylated proteins by using Spore@Fe3+ microspheres. Anal Chim Acta 986:161–170

    Article  CAS  Google Scholar 

  13. Liu W, Zheng JN, Li SH, Wang RR, Lin ZA, Yang HH (2015) Aluminium glycinate functionalized silica nanoparticles for highly specific separation of phosphoproteins. J Mater Chem B 3:6528–6535

    Article  CAS  Google Scholar 

  14. Cheng G, Wang ZG, Liu YL, Zhang JL, Sun DH, Ni JZ (2013) Magnetic affinity microspheres with meso−/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules. ACS Appl Mater Interfaces 5:3182–3190

    Article  CAS  Google Scholar 

  15. Jain P, Sun L, Dai J, Baker G, Bruening M (2007) High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes. Biomacromolecules 8:3102–3107

    Article  CAS  Google Scholar 

  16. Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic-inorganic Polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048

    Article  CAS  Google Scholar 

  17. Kozhevnikov IV (1998) Catalysis by Heteropoly acids and multicomponent Polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  18. Chambers RC, Hil CL (1991) Comparative study of Polyoxometalates and semiconductor metal oxides as catalysts. Photochemical oxidative degradation of Thioethers. Inorg Chem 30:2776–2781

    Article  CAS  Google Scholar 

  19. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327–357

    Article  CAS  Google Scholar 

  20. Wang MM, Chen Q, Zhang DD, Chen XW, Chen ML (2017) Tetra-nickel substituted polyoxotungsate as an efficient sorbent for the isolation of His6-tagged proteins from cell lysate. Talanta 171:173–178

    Article  CAS  Google Scholar 

  21. Li TF, Miras HN, Song Y-F (2017) Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications. Catalysts 7:260

    Article  Google Scholar 

  22. Li HL, Perkas N, Li QL, Gofer Y, Koltypin Y, Gedanken A (2003) Improved Silanization modification of a silica surface and its application to the preparation of a silica-supported Polyoxometalate catalyst. Langmuir 19:10409–10413

    Article  CAS  Google Scholar 

  23. Liu YW, Liu SM, Lai XY, Miao J, He DF, Li N, Luo F, Shi Z, Liu SX (2015) Polyoxometalate-modified sponge-like graphene oxide monolith with high proton-conducting performance. Adv Funct Mater 25:4480–4485

    Article  CAS  Google Scholar 

  24. Ginsberg AP (1990) Vanadium(V) substituted Dodecatungstophosphates. Inorg Synth 27:96–104

    Google Scholar 

  25. Iijima J, Ishikawa E, Nakamura Y, Naruke H (2010) Synthesis and structural investigation of sandwich polyoxotungstates containing cerium (III/IV) and mono-lacunary Keggin tungstophosphate units. Inorg Chim Acta 363:1500–1506

    Article  CAS  Google Scholar 

  26. Chen Q, Hu X, Zhang DD, Chen XW, Wang JH (2017) Selective isolation of myosin Subfragment-1 with a DNA-Polyoxovanadate bioconjugate. Bioconjug Chem 28:2976–2984

    Article  CAS  Google Scholar 

  27. Dreyer DR, Park SJ, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  28. Stroobants K, Moelants E, Ly HG, Proost P, Bartik K, Parac-Vogt TN (2013) Polyoxometalates as a novel class of artificial proteases: selective hydrolysis of lysozyme under physiological pH and temperature promoted by a cerium(IV) Keggin-type polyoxometalate. Chem Eur J 19:2848–2858

    Article  CAS  Google Scholar 

  29. McSweeney PLH, Fox PF (2013) Advanced dairy chemistry volume 1A: proteins: basic aspects, 4th edn. Springer, New York, pp 135–160

    Google Scholar 

  30. Zhang D-D, Guo P-F, Hu L-L, Chen X-W, Wang J-H (2017) Regulation of the adsorption selectivity of acidic or basic proteins using a polyoxometalate composite. J Mater Chem B 5:750–756

    Article  CAS  Google Scholar 

  31. de Groot J, Kosters HA, de Jongh HH (2007) Deglycosylation of ovalbumin prohibits formation of a heat-stable conformer. Biotechnol Bioeng 97:735–741

    Article  Google Scholar 

  32. Deng QL, Wu JH, Chen Y, Zhang ZJ, Wang Y, Fang GZ, Wang S, Zhang YK (2014) Guanidinium functionalized superparamagnetic silica spheres for selective enrichment of phosphopeptides and intact phosphoproteins from complex mixtures. J Mater Chem B 2:1048–1058

    Article  CAS  Google Scholar 

  33. Akgöl S, Öztürk N, Denizli A (2008) Dye-affinity hollow fibers for β-casein purification. React Funct Polym 68:225–232

    Article  Google Scholar 

  34. Lu ZD, Ye MM, Li N, Zhong WW, Yin YD (2010) Self-assembled TiO2 nanocrystal clusters for selective enrichment of intact phosphorylated proteins. Angew Chem Int Ed 49:1862–1866

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (21605014, 21475018 and 21727811) and the Fundamental Research Funds for the Central Universities (N160504010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Liang Yu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 7909 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MM., Chen, S., Zhang, DD. et al. Immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide for selective extraction of phosphoproteins. Microchim Acta 185, 553 (2018). https://doi.org/10.1007/s00604-018-3095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3095-9

Keywords

Navigation