Skip to main content
Log in

A fluorometric assay for staphylococcal enterotoxin B by making use of platinum coated gold nanorods and of upconversion nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An aptamer based fluorometric assay is presented for fast and accurate detection of staphylococcal enterotoxin B (SEB). It is making use of platinum-coated gold nanorods (AuNR@Pt) and upconversion nanoparticles (UCNPs). The aptamer against SEB is immobilized on AuNR@Pt while the complementary DNA fragment of SEB aptamer is immobilized on UCNPs. As the concentration of SEB increases, the fluorescence of the satellite assembly (AuNR@Pt-UCNPs) is gradually restored. Under the optimized conditions, fluorescence (best measured at excitation/emission wavelengths of 980/543 nm) linearly increases in the 2.0–400 pg·mL−1 SEB concentration range. The limit of detection is as low as 0.9 pg·mL−1 (at an S/N of 3), significantly lower than existing methods. The method was applied to the determination of SEB in spiked milk samples. The average recoveries ranged from 91.2% to 104.6%, confirming the practicality of this method.

Schematic illustration of a fluorometric assay based on inner filter effect (IFE) between platinum coated gold nanorods (AuNR@Pt) and upconversion nanoparticles (UCNPs) for the determination of staphylococcal enterotoxin B (SEB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61(1):1–10

    Article  CAS  PubMed  Google Scholar 

  2. Hwang J, Lee S, Choo J (2016) Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale 8(22):11418–11425

    Article  CAS  PubMed  Google Scholar 

  3. Muratovic AZ, Hagström T, Rosén J, Granelli K, Hellenäs K-E (2015) Quantitative analysis of staphylococcal enterotoxins a and B in food matrices using ultra high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Toxins 7(9):3637–3656

    Article  CAS  PubMed  Google Scholar 

  4. Leclaire RD, Kell W, Bavari S, Smith TJ, Hunt RE (1996) Protective effects of niacinamide in staphylococcal enterotoxin-B-induced toxicity. Toxicology 107(1):69–81

    Article  CAS  PubMed  Google Scholar 

  5. Tsui PY, Chiao DJ, Wey JJ, Liu CC, Yu CP, Shyu RH (2013) Development of staphylococcal enterotoxin B detection strips and application of seb detection strips in food. J Med Sci 33(5):285–291

    Google Scholar 

  6. Mantis NJ (2005) Vaccines against the category B toxins: staphylococcal enterotoxin B, epsilon toxin and ricin. Adv Drug Deliv Rev 57(9):1424–1439

    Article  CAS  PubMed  Google Scholar 

  7. Liu F, Li Y, Song C, Dong B, Liu Z, Zhang K, Li H, Sun Y, Wei Y, Yang A (2010) Highly sensitive microplate chemiluminescence enzyme immunoassay for the determination of staphylococcal enterotoxin B based on a pair of specific monoclonal antibodies and its application to various matrices. Anal Chem 82(18):7758–7765

    Article  CAS  PubMed  Google Scholar 

  8. Temur E, Zengin A, Boyacı İ H, Dudak FC, Torul H, Tamer U (2012) Attomole sensitivity of staphylococcal enterotoxin B detection using an aptamer-modified surface-enhanced Raman scattering probe. Anal Chem 84(24):10600–10606

    Article  CAS  PubMed  Google Scholar 

  9. Xiong X, Shi X, Liu Y, Lu L, You J (2018) An aptamer-based electrochemical biosensor for simple and sensitive detection of staphylococcal enterotoxin B in milk. Anal Methods 10(3):365–370

    Article  CAS  Google Scholar 

  10. Sapsford KE, Francis J, Sun S, Kostov Y, Rasooly A (2009) Miniaturized 96-well ELISA chips for staphylococcal enterotoxin B detection using portable colorimetric detector. Anal Bioanal Chem 394(2):499–505

    Article  CAS  PubMed  Google Scholar 

  11. Xue P, Li Y, Zhang Z, Fu A, Liu F, Zhang X, Sun Y, Chen L, Jin B, Yang K (2011) Novel chemiluminescent assay for staphylococcal enterotoxin B. Microchim Acta 174(1–2):167–174

    Article  CAS  Google Scholar 

  12. Tsai W-C, Pai P-JR (2009) Surface plasmon resonance-based immunosensor with oriented immobilized antibody fragments on a mixed self-assembled monolayer for the determination of staphylococcal enterotoxin B. Microchim Acta 166(1):115–122

    Article  CAS  Google Scholar 

  13. Ruan C, Zeng K, Varghese OK, Grimes CA (2004) A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosens Bioelectron 20(3):585–591

    Article  CAS  PubMed  Google Scholar 

  14. Wu L, Gao B, Zhang F, Sun X, Zhang Y, Li Z (2013) A novel electrochemical immunosensor based on magnetosomes for detection of staphylococcal enterotoxin B in milk. Talanta 106:360–366

    Article  CAS  PubMed  Google Scholar 

  15. Vinayaka AC, Thakur MS (2012) An immunoreactor-based competitive fluoroimmunoassay for monitoring staphylococcal enterotoxin B using bioconjugated quantum dots. Analyst 137(18):4343–4348

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Wang W, Liu L, Xu L, Kuang H, Zhu J, Xu C (2016) Nanoshell-enhanced Raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing. ACS Appl Mater Interfaces 8(24):15591–15597

    Article  CAS  PubMed  Google Scholar 

  17. Zhou D, Xie G, Cao X, Chen X, Zhang X, Chen H (2016) Colorimetric determination of staphylococcal enterotoxin B via DNAzyme-guided growth of gold nanoparticles. Microchim Acta 183(10):2753–2760

    Article  CAS  Google Scholar 

  18. Wu S, Liu L, Duan N, Wang W, Yu Q, Wang Z (2018) A test strip for ochratoxin a based on the use of aptamer-modified fluorescence upconversion nanoparticles. Microchim Acta 185(11):497–503

    Article  Google Scholar 

  19. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914

    Article  CAS  Google Scholar 

  20. Huck CW, Ozaki Y, Huck-Pezzei VA (2016) Critical review upon the role and potential of fluorescence and near-infrared imaging and absorption spectroscopy in Cancer related cells, serum, saliva, urine and tissue analysis. Curr Med Chem 23(27):3052–3077

    Article  CAS  PubMed  Google Scholar 

  21. Dai S, Wu S, Duan N, Wang Z (2016) A near-infrared magnetic aptasensor for Ochratoxin a based on near-infrared upconversion nanoparticles and magnetic nanoparticles. Talanta 158:246–253

    Article  CAS  PubMed  Google Scholar 

  22. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z (2013) A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy. Anal Chim Acta 782(9):59–66

    Article  CAS  PubMed  Google Scholar 

  23. Qiao H, Cui Z, Yang S, Ji D, Wang Y, Yang Y, Han X, Fan Q, Qin A, Wang T, He X-P, Bu W, Tang T (2017) Targeting osteocytes to attenuate early breast Cancer bone metastasis by Theranostic Upconversion nanoparticles with responsive Plumbagin release. ACS Nano 11(7):7259–7273

    Article  CAS  PubMed  Google Scholar 

  24. Lv J, Zhao S, Wu S, Wang Z (2017) Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing. Biosens Bioelectron 90:203–209

    Article  CAS  PubMed  Google Scholar 

  25. Wu Z, He D, Xu E, Jiao A, Chughtai MFJ, Jin Z (2018) Rapid detection of β-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification. Food Chem 269:375–379

    Article  CAS  PubMed  Google Scholar 

  26. Lahtinen S, Lyytikäinen A, Sirkka N, Päkkilä H, Soukka T (2018) Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid). Microchim Acta 185(4):220–227

    Article  Google Scholar 

  27. Chen L, Xia N, Li T, Bai Y, Chen X (2016) Aptasensor for visual and fluorometric determination of lysozyme based on the inner filter effect of gold nanoparticles on CdTe quantum dots. Microchim Acta 183(11):1–7

    Google Scholar 

  28. Wu Z, Xu E, Jin Z, Irudayaraj J (2018) An ultrasensitive aptasensor based on fluorescent resonant energy transfer and exonuclease-assisted target recycling for patulin detection. Food Chem 249:136–142

    Article  CAS  PubMed  Google Scholar 

  29. Dehghani Z, Hosseini M, Mohammadnejad J, Bakhshi B, Rezayan AH (2018) Colorimetric aptasensor for campylobacter jejuni cells by exploiting the peroxidase like activity of au@Pd nanoparticles. Microchim Acta 185(10):448–456

    Article  Google Scholar 

  30. Sharipov M, Tawfik SM, Gerelkhuu Z, Huy BT, Lee Y-I (2017) Phospholipase A2-responsive phosphate micelle-loaded UCNPs for bioimaging of prostate Cancer cells. Sci Rep 7(1):16073–16073

    Article  PubMed  PubMed Central  Google Scholar 

  31. DeGrasse JA (2012) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7(3):e33410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao R, Hao C, Xu L, Kuang H, Xu C (2018) Spiny Nanorod and Upconversion nanoparticle satellite assemblies for ultrasensitive detection of messenger RNA in living cells. Anal Chem 90:5414–5421

    Article  CAS  PubMed  Google Scholar 

  33. Ma Y-S, Pan Y, Xie Q-T, Li X-M, Zhang B, Chen H-Q (2019) Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chem 274:319–323

    Article  CAS  PubMed  Google Scholar 

  34. And BN, Elsayed MA (2003) Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  Google Scholar 

  35. Pan N, Li-Ying W, Wu L-L, Peng C-F, Xie Z-J (2017) Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of au@Pt core-shell nanohybrids. Microchim Acta 184(1):65–72

    Article  CAS  Google Scholar 

  36. Zhu H, Lu F, Wu XC, Zhu JJ (2015) An upconversion fluorescent resonant energy transfer biosensor for hepatitis B virus (HBV) DNA hybridization detection. Analyst 140(22):7622–7628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Nature Science Foundation of Jiangsu Province (No. BK20160168), Nature Science Foundation of China (Nos. 31601413 and 31501418) and Special Funds for Taishan Scholars Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengzong Wu or Bo Cui.

Ethics declarations

The author(s) declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., He, D. & Cui, B. A fluorometric assay for staphylococcal enterotoxin B by making use of platinum coated gold nanorods and of upconversion nanoparticles. Microchim Acta 185, 516 (2018). https://doi.org/10.1007/s00604-018-3058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3058-1

Keywords

Navigation