Skip to main content

Colorimetric DNA assay by exploiting the DNA-controlled peroxidase mimicking activity of mesoporous silica loaded with platinum nanoparticles

Abstract

A nanozyme composed of mesoporous silica and platinum nanoparticles (MS-PtNPs) was synthesized and is shown to display peroxidase-like activity. Its activity can be controlled by loading with single-stranded DNA. The PtNPs on the MS are homogeneously distributed and act as enzyme mimics. The adsorption of DNA probe on the MS blocks the nucleation sites of PtNPs. This leads to a decrease in the peroxidase-mimicking activity. After introduction of target DNA that is complementary to the DNA probe, the activity of the nanozyme is recovered. By using the 3,3,5,5-tetramethylbenzidine/H2O2 chromogenic system, a rapid method was developed for colorimetric determination of DNA. The assay, best performed at 450 nm, has a linear response in the 5 nM to 100 nM DNA concentration range and a 2.6 nM detection limit. It possesses high selectivity and can distinguish even a single-base mismatch.

The peroxidase-like activity of mesoporous silica and platinum nanoparticles (MS-PtNPs) was depressed when noncovalent ssDNA-MS was in-situ deposited on the PtNPs. After introduction of target DNA, the complementary dsDNA releases from the MS, and then its activity is recovered.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chen W, Fang X, Li H, Cao H, Kong J (2016) A simple paper-based colorimetric device for rapid mercury(II) assay. Sci Rep 6:31948. https://doi.org/10.1038/srep31948

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Zhou Y, Liu B, Yang R, Liu J (2017) Filling in the gaps between Nanozymes and enzymes: challenges and opportunities. Bioconjug Chem 28(12):2903–2909. https://doi.org/10.1021/acs.bioconjchem.7b00673

    CAS  Article  Google Scholar 

  3. 3.

    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093. https://doi.org/10.1039/c3cs35486e

    CAS  Article  Google Scholar 

  4. 4.

    Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323–342. https://doi.org/10.1007/s00604-016-2036-8

    CAS  Article  Google Scholar 

  5. 5.

    Vijwani H, Mukhopadhyay SM (2012) Palladium nanoparticles on hierarchical carbon surfaces: a new architecture for robust nano-catalysts. Appl Surf Sci 263:712–721. https://doi.org/10.1016/j.apsusc.2012.09.146

    CAS  Article  Google Scholar 

  6. 6.

    Somorjai GA, Contreras AM, Montano M, Rioux RM (2006) Clusters, surfaces, and catalysis. Proc Natl Acad Sci U S A 103(28):10577–10583. https://doi.org/10.1073/pnas.0507691103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cao A, Veser G (2010) Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles. Nat Mater 9(1):75–81. https://doi.org/10.1038/nmat2584

    CAS  Article  Google Scholar 

  8. 8.

    Shiqiang C, Yu G, Zhenyu Z, Zhen C, Yurong M, Limin Q (2017) Cyclodextrin-gated mesoporous silica nanoparticles as drug carriers for red light-induced drug release. Nanotechnology 28(14):145101

    Article  Google Scholar 

  9. 9.

    Qian R, Ding L, Ju H (2013) Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive Mesoporous silica nanoparticle. J Am Chem Soc 135(36):13282–13285. https://doi.org/10.1021/ja406532e

    CAS  Article  Google Scholar 

  10. 10.

    Kobler J, Möller K, Bein T (2008) Colloidal suspensions of functionalized Mesoporous silica nanoparticles. ACS Nano 2(4):791–799. https://doi.org/10.1021/nn700008s

    CAS  Article  Google Scholar 

  11. 11.

    Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K (2012) Preparation of colloidal Mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater 24(8):1462–1471. https://doi.org/10.1021/cm3001688

    CAS  Article  Google Scholar 

  12. 12.

    Shen D, Chen L, Yang J, Zhang R, Wei Y, Li X, Li W, Sun Z, Zhu H, Abdullah AM, Al-Enizi A, Elzatahry AA, Zhang F, Zhao D (2015) Ultradispersed palladium nanoparticles in three-dimensional dendritic Mesoporous silica Nanospheres: toward active and stable heterogeneous catalysts. ACS Appl Mater Interfaces 7(31):17450–17459. https://doi.org/10.1021/acsami.5b04992

    CAS  Article  Google Scholar 

  13. 13.

    Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long Y-T, Fan C (2011) Catalytic gold nanoparticles for Nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed 50(50):11994–11998. https://doi.org/10.1002/anie.201105121

    CAS  Article  Google Scholar 

  14. 14.

    Zeng Y, Zhang D, Qi P, Zheng L (2017) Colorimetric detection of DNA by using target catalyzed DNA nanostructure assembly and unmodified gold nanoparticles. Microchim Acta 184(12):4809–4815. https://doi.org/10.1007/s00604-017-2463-1

    CAS  Article  Google Scholar 

  15. 15.

    Ma H, Li Z, Xue N, Cheng Z, Miao X (2018) A gold nanoparticle based fluorescent probe for simultaneous recognition of single-stranded DNA and double-stranded DNA. Microchim Acta 185(2):93. https://doi.org/10.1007/s00604-017-2633-1

    CAS  Article  Google Scholar 

  16. 16.

    Zhou K, Wang Y, Huang X, Luby-Phelps K, Sumer Baran D, Gao J (2011) Tunable, ultrasensitive pH-responsive nanoparticles targeting specific Endocytic organelles in living cells. Angew Chem Int Ed 50(27):6109–6114. https://doi.org/10.1002/anie.201100884

    CAS  Article  Google Scholar 

  17. 17.

    Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin−Graphene hybrid Nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290. https://doi.org/10.1021/nn1029586

    CAS  Article  Google Scholar 

  18. 18.

    Tao Y, Lin Y, Ren J, Qu X (2013) Self-assembled, functionalized graphene and DNA as a universal platform for colorimetric assays. Biomaterials 34(20):4810–4817. https://doi.org/10.1016/j.biomaterials.2013.03.039

    CAS  Article  Google Scholar 

  19. 19.

    Liu M, Zhao H, Chen S, Yu H, Quan X (2012) Interface engineering catalytic Graphene for smart colorimetric biosensing. ACS Nano 6(4):3142–3151. https://doi.org/10.1021/nn3010922

    CAS  Article  Google Scholar 

  20. 20.

    Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621. https://doi.org/10.1002/chem.200902643

    CAS  Article  Google Scholar 

  21. 21.

    Kanjanawarut R, Su X (2009) Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem 81(15):6122–6129. https://doi.org/10.1021/ac900525k

    CAS  Article  Google Scholar 

  22. 22.

    Climent E, Mondragón L, Martínez-Máñez R, Sancenón F, Marcos MD, Murguía Jose R, Amorós P, Rurack K, Pérez-Payá E (2013) Selective, highly sensitive, and rapid detection of genomic DNA by using gated materials: mycoplasma detection. Angew Chem Int Ed 52(34):8938–8942. https://doi.org/10.1002/anie.201302954

    CAS  Article  Google Scholar 

  23. 23.

    Ren K, Wu J, Zhang Y, Yan F, Ju H (2014) Proximity hybridization regulated DNA biogate for sensitive electrochemical immunoassay. Anal Chem 86(15):7494–7499. https://doi.org/10.1021/ac5012377

    CAS  Article  Google Scholar 

  24. 24.

    Chen W, Fang X, Li H, Cao H, Kong J (2017) DNA-mediated inhibition of peroxidase-like activities on platinum nanoparticles for simple and rapid colorimetric detection of nucleic acids. Biosens Bioelectron 94:169–175. https://doi.org/10.1016/j.bios.2017.02.025

    CAS  Article  Google Scholar 

  25. 25.

    Yuan F, Zhao H, Zang H, Ye F, Quan X (2016) Three-dimensional Graphene supported bimetallic Nanocomposites with DNA regulated-flexibly switchable peroxidase-like activity. ACS Appl Mater Interfaces 8(15):9855–9864. https://doi.org/10.1021/acsami.6b00306

    CAS  Article  Google Scholar 

  26. 26.

    Zhang P, Wu T, Kong J-L (2014) In situ monitoring of intracellular controlled drug release from Mesoporous silica nanoparticles coated with pH-responsive charge-reversal polymer. ACS Appl Mater Interfaces 6(20):17446–17453. https://doi.org/10.1021/am5059519

    CAS  Article  Google Scholar 

  27. 27.

    Tang S, Wang M, Li G, Li X, Chen W, Zhang L (2018) Ultrasensitive colorimetric determination of silver(I) based on the peroxidase mimicking activity of a hybrid material composed of graphitic carbon nitride and platinum nanoparticles. Microchim Acta 185(5):273. https://doi.org/10.1007/s00604-018-2816-4

    CAS  Article  Google Scholar 

  28. 28.

    Lin Y, Li Z, Chen Z, Ren J, Qu X (2013) Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials 34(11):2600–2610. https://doi.org/10.1016/j.biomaterials.2013.01.007

    CAS  Article  Google Scholar 

  29. 29.

    Zhu J, Kónya Z, Puntes VF, Kiricsi I, Miao CX, Ager JW, Alivisatos AP, Somorjai GA (2003) Encapsulation of metal (au, Ag, Pt) nanoparticles into the Mesoporous SBA-15 structure. Langmuir 19(10):4396–4401. https://doi.org/10.1021/la0207421

    CAS  Article  Google Scholar 

  30. 30.

    Xu H-H, Deng H-H, Lin X-Q, Wu Y-Y, Lin X-L, Peng H-P, Liu A-L, Xia X-H, Chen W (2017) Colorimetric glutathione assay based on the peroxidase-like activity of a nanocomposite consisting of platinum nanoparticles and graphene oxide. Microchim Acta 184(10):3945–3951. https://doi.org/10.1007/s00604-017-2429-3

    CAS  Article  Google Scholar 

  31. 31.

    Prashar AK, Hodgkins RP, Chandran JN, Rajamohanan PR, Devi RN (2010) In situ encapsulation of Pt Nanoarchitectures of varying morphologies in Mesoporous compounds. Chem Mater 22(5):1633–1639. https://doi.org/10.1021/cm9036499

    CAS  Article  Google Scholar 

  32. 32.

    Wang Q, Zhang Y, Zhou Y, Zhang Z, Xu Y, Zhang C, Zhang H, Sheng X (2016) Preparation of platinum nanoparticles immobilized on ordered mesoporous Co3O4–CeO2 composites and their enhanced catalytic activity. RSC Adv 6(71):67173–67183. https://doi.org/10.1039/C6RA08784A

    CAS  Article  Google Scholar 

  33. 33.

    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260 https://www.nature.com/articles/nnano.2007.260#supplementary-information

    CAS  Article  Google Scholar 

  34. 34.

    Ge J, Lei J, Zare RN (2012) Protein–inorganic hybrid nanoflowers. Nat Nanotechnol 7:428–432. https://doi.org/10.1038/nnano.2012.80 https://www.nature.com/articles/nnano.2012.80#supplementary-information

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the kind help from the colleagues in our groups. We acknowledge the National Natural Science Foundation of China (21505024, 21427806, 21175029, 21335002), the Introduce Talents of Fudan University Research Funding (IDH1615001, JIH1615005), and the Shanghai Leading Academic Discipline Project (B109).

Author information

Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Xueen Fang or Jilie Kong.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3.36 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Fang, X., Ye, X. et al. Colorimetric DNA assay by exploiting the DNA-controlled peroxidase mimicking activity of mesoporous silica loaded with platinum nanoparticles. Microchim Acta 185, 544 (2018). https://doi.org/10.1007/s00604-018-3026-9

Download citation

Keywords

  • Controllable nanozyme
  • Colorimetric analysis
  • DNA assay
  • In situ synthesis
  • Metal nanoparticles
  • Nanocomposites
  • Noncovalent DNA-inorganic nanomaterials
  • Peroxidase-like activity
  • Self-assembly
  • Synergistic effect