Skip to main content
Log in

Analyte-triggered cyclic autocatalytic oxidation amplification combined with an upconversion nanoparticle probe for fluorometric detection of copper(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an upconversion nanoparticle-based (UCNP–based) fluorometric method for ultrasensitive and selective detection of Cu2+. The UCNPs show a strong emission band at 550 nm under near-infrared excitation at 980 nm. The principle of the strategy is that gold nanoparticles (AuNP) can quench the fluorescence of UCNP. In contrast, the addition of L-cysteine (Cys) can induce the aggregation of AuNP, resulting in a fluorescence recovery of the UCNPs. On addition of Cu2+, it oxidizes Cys to cystine and is reduced to Cu+. The Cu+ thusformed can be oxidized cyclically to Cu2+ by dissolved O2, which catalyzes and recycles the whole reaction. Thus, the aggregation of AuNP is inhibited and the fluorescence recovered by Cys is quenched. Under the optimal condition, the quenching efficiency shows a good linear response to the concentrations of Cu2+ in the 0.4–40 nM range. The limit of detection is 0.16 nM, which is 5 orders of magnitude lower than the U.S. Environmental Protection Agency limit for Cu2+ in drinking water (20 μM). The method has been further applied to monitor Cu2+ levels in real samples. The results of detection are well consistent with those obtained by atomic absorption spectroscopy.

Gold nanoparticles (AuNP) as a high efficient fluorescence quenching reagent of upconversion nanoparticles (UCNP) were used in a fluorometric method for detection of Cu2+ based on a cyclic catalytic oxidation amplification strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yao Z, Yang Y, Chen X, Hu X, Zhang L, Liu L, Zhao Y, Wu H-C (2013) Visual detection of copper (II) ions based on an anionic polythiophene derivative using click chemistry. Anal Chem 85:5650–5653

    Article  CAS  Google Scholar 

  2. Pramanik D, Ghosh C, Dey SG (2011) Heme–Cu bound Aβ peptides: spectroscopic characterization, reactivity, and relevance to Alzheimer’s disease. J Am Chem Soc 133:15545–15552

    Article  CAS  Google Scholar 

  3. Lima GF, Ohara MO, Clausen DN, Nascimento DR, Ribeiro ES, Segatelli MG, Bezerra MA, Tarley CR (2012) Flow injection on-line minicolumn preconcentration and determination of trace copper ions using an alumina/titanium oxide grafted silica matrix and FAAS. Microchim Acta 178:61–70

    Article  CAS  Google Scholar 

  4. Dai B, Cao M, Fang G, Liu B, Dong X, Pan M, Wang S (2012) Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater 219:103–110

    Article  Google Scholar 

  5. Atanassova D, Stefanova V, Russeva E (1998) Co-precipitative pre-concentration with sodium diethyldithiocarbamate and ICP-AES determination of Se, Cu, Pb, Zn, Fe, Co, Ni, Mn, Cr and Cd in water. Talanta 47:1237–1243

    Article  CAS  Google Scholar 

  6. Xiang L, Yu P, Hao J, Zhang M, Zhu L, Dai L, Mao L (2014) Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo. Anal Chem 86:3909–3914

    Article  CAS  Google Scholar 

  7. Ge C, Chen J, Wu W, Fang Z, Chen L, Liu Q, Wang L, Xing X, Zeng L (2013) An enzyme-free and label-free assay for copper (II) ion detection based on self-assembled DNA concatamers and Sybr Green I. Analyst 138:4737–4740

    Article  CAS  Google Scholar 

  8. Zhan S, Xu H, Zhang W, Zhan X, Wu Y, Wang L, Zhou P (2015) Sensitive fluorescent assay for copper (II) determination in aqueous solution using copper-specific ssDNA and Sybr Green I. Talanta 142:176–182

    Article  CAS  Google Scholar 

  9. Wang Y-Q, Zhao T, He X-W, Li W-Y, Zhang Y-K (2014) A novel core-satellite CdTe/Silica/Au NCs hybrid sphere as dual-emission ratiometric fluorescent probe for Cu2+. Biosens Bioelectron 51:40–46

    Article  CAS  Google Scholar 

  10. Li F, Wang J, Lai Y, Wu C, Sun S, He Y, Ma H (2013) Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens Bioelectron 39:82–87

    Article  Google Scholar 

  11. Shen Q, Li W, Tang S, Hu Y, Nie Z, Huang Y, Yao S (2013) A simple “clickable” biosensor for colorimetric detection of copper (II) ions based on unmodified gold nanoparticles. Biosens Bioelectron 41:663–668

    Article  CAS  Google Scholar 

  12. Wang J, Deng R, MacDonald MA, Chen B, Yuan J, Wang F, Chi D, Hor TSA, Zhang P, Liu G (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13:157–162

    Article  CAS  Google Scholar 

  13. Zhou L, He B, Huang J, Cheng Z, Xu X, Wei C (2014) Multihydroxy dendritic upconversion nanoparticles with enhanced water dispersibility and surface functionality for bioimaging. ACS Appl Mater Interfaces 6:7719–7727

    Article  CAS  Google Scholar 

  14. Tu L, Liu X, Wu F, Zhang H (2015) Excitation energy migration dynamics in upconversion nanomaterials. Chem Soc Rev 44:1331–1345

    Article  CAS  Google Scholar 

  15. Li J, Li X, Shi X, He X, Wei W, Ma N, Chen H (2013) Highly sensitive detection of caspase-3 activities via a nonconjugated gold nanoparticle-quantum dot pair mediated by an inner-filter effect. ACS Appl Mater Interfaces 5:9798–9802

    Article  CAS  Google Scholar 

  16. Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84:6220–6224

    Article  CAS  Google Scholar 

  17. Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco Capobianco JA (2015) Upconverting nanoparticles: assessing the toxicity. Chem Soc Rev 44:1561–1584

    Article  CAS  Google Scholar 

  18. Yin B, Zhou W, Long Q, Li C, Zhang Y, Yao S (2014) Salt-assisted rapid transformation of NaYF4:Yb3+,Er3+ nanocrystals from cubic to hexagonal. CrystEngComm 16:8348–8355

    Article  CAS  Google Scholar 

  19. Saleh SM, Ali R, Hirsch T, Wolfbeis OS (2011) Detection of biotin–avidin affinity binding by exploiting a self-referenced system composed of upconverting luminescent nanoparticles and gold nanoparticles. J Nanopart Res 13:4603–4611

    Article  CAS  Google Scholar 

  20. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    Article  CAS  Google Scholar 

  21. Mao M, Tian T, He Y, Ge Y, Zhou J, Song G (2018) Inner filter effect based fluorometric determination of the activity of alkaline phosphatase by using carbon dots codoped with boron and nitrogen. Microchim Acta 185:17–22

    Article  Google Scholar 

  22. Muhr V, Würth C, Kraft M, Buchner M, Reschgenger U, Baeumner AJ, Hirsch T (2017) Particle-size dependent Förster resonance energy transfer from upconversion nanoparticles to organic dyes. Anal Chem 89:4868–4876

    Article  CAS  Google Scholar 

  23. Zhao J, Yi Y, Mi N, Yin B, Wei M, Chen Q, Li H, Zhang Y, Yao S (2013) Gold nanoparticle coupled with fluorophore for ultrasensitive detection of protamine and heparin. Talanta 116:951–957

    Article  CAS  Google Scholar 

  24. Li L, Li B (2009) Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 134:1361–1365

    Article  CAS  Google Scholar 

  25. Pecci L, Montefoschi G, Musci G, Cavallini D (1997) Novel findings on the copper catalysed oxidation of cysteine. Amino Acids 13:355–367

    Article  CAS  Google Scholar 

  26. Shao H, Xu D, Ding Y, Hong X, Liu Y (2018) An "off-on" colorimetric and fluorometric assay for Cu(II) based on the use of NaYF4:Yb(III),Er(III) upconversion nanoparticles functionalized with branched polyethylenimine. Microchim Acta 185:211–218

    Article  Google Scholar 

  27. Huang X, Schubert AB, Chrisman JD, Zacharia NS (2013) Formation and tunable disassembly of polyelectrolyte-Cu2+ layer-by-layer complex film. Langmuir 29:12959–12968

    Article  CAS  Google Scholar 

  28. Chen X, Lu Q, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S (2018) Highly sensitive and selective determination of copper(II) based on a dual catalytic effect and by using silicon nanoparticles as a fluorescent probe. Mikrochim Acta 185:188–194

    Article  Google Scholar 

  29. Kim YR, Mahajan RK, Kim JS, Kim H (2010) Highly sensitive gold nanoparticle-based colorimetric sensing of mercury(II) through simple ligand exchange reaction in aqueous media. ACS Appl Mater Interfaces 2:292–295

    Article  CAS  Google Scholar 

  30. Liu F, Yang L, Shi X, Wang H, Zhu X (2013) Preparation and characterization of monoclonal antibody specific for copper–chelate complex. J Immunol Methods 387:228–236

    Article  CAS  Google Scholar 

  31. Lou T, Chen L, Chen Z, Wang Y, Chen L, Li J (2011) Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. ACS Appl Mater Interfaces 3:4215–4220

    Article  CAS  Google Scholar 

  32. Xianyu Y, Zhu K, Chen W, Wang X, Zhao H, Sun J, Wang Z, Jiang X (2013) Enzymatic assay for Cu(II) with horseradish peroxidase and its application in colorimetric logic gate. Anal Chem 85:7029–7032

    Article  CAS  Google Scholar 

  33. Chao MR, Hu CW, Chen JL (2016) Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Microchim Acta 183:1323–1332

    Article  CAS  Google Scholar 

  34. Deng HH, Li GW, Liu AL, Chen W, Lin XH, Xia XH (2014) Thermally treated bare gold nanoparticles for colorimetric sensing of copper ions. Microchim Acta 181:911–916

    Article  CAS  Google Scholar 

  35. Wang X, Chen L, Chen L (2014) Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods. Microchim Acta 181:105–110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21475043 and 21874042), Foundation of the Science & Technology Department of Hunan Province (2016SK2020), and the Hunan Provincial Innovation Foundation for Postgraduate (CX2017B225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youyu Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 963 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., He, K., Li, H. et al. Analyte-triggered cyclic autocatalytic oxidation amplification combined with an upconversion nanoparticle probe for fluorometric detection of copper(II). Microchim Acta 185, 484 (2018). https://doi.org/10.1007/s00604-018-3015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3015-z

Keywords

Navigation