Skip to main content

Advertisement

Log in

Graphene oxide wrapped with gold nanorods as a tag in a SERS based immunoassay for the hepatitis B surface antigen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A composite consisting of graphene oxide and gold nanorods (GO-GNRs) was designed for the trace determination of hepatitis B surface antigen (HBsAg) using surface enhanced Raman spectroscopy (SERS). GO contains numerous carboxy and hydroxy groups on its surface and therefore can serve as the substrate for decoration with GNRs and for immobilizing antibody against HBsAg. The GNRs (carrying the SERS probe 2-mercaptopyridine) exhibit high SERS activity, and this improves the sensitivity of the biosensor. The antibody on the GO-GNRs binds HBsAg with high specificity, and it results in excellent selectivity. The SERS signal (measured at 1002 cm−1) increases in the 1–1000 pg·mL−1 HBsAg concentrations range, and the limit of detection is 0.05 pg·mL−1 (at an S/N ratio of 3). The immunoassay achieves the sensitive and selective determination of HBsAg in serum and expands the potential application of GO-GNR based SERS tag in clinical research.

A novel graphene oxide-gold nanorod (GO-GNRs) based surface-enhanced Raman scattering (SERS) tag for immunoassay was designed. It allows for sensitive and selective determination of HBsAg in serum. The method is expected to expand the potential application in the environment, in medicine and in food analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yildiz U, Inci F, Wang S, Toy M, Tekin H, Javaid A, Lau D, Demirci U (2015) Recent advances in micro/nanotechnologies for global control of hepatitis B infection. Biotechnol Adv 33(1):178–190

    Article  CAS  Google Scholar 

  2. Xi Z, Huang R, Li Z, He N, Wang T, Su E, Deng Y (2015) Selection of HBsAg-specific DNA aptamers based on Carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection. ACS Appl Mater Interfaces 7(21):11215–11223

    Article  CAS  Google Scholar 

  3. Xiang Q, Huang J, Huang H, Mao W, Ye Z (2018) A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv 8(4):1820–1825

    Article  CAS  Google Scholar 

  4. Li X, Zhang S, Yu Z, Yang T (2014) Surface-enhanced Raman spectroscopic analysis of Phorate and Fenthion pesticide in apple skin using silver nanoparticles. Appl Spectrosc 68(4):483–487

    Article  CAS  Google Scholar 

  5. Hakonen A, Svedendahl M, Ogier R, Yang Z-J, Lodewijks K, Verre R, Shegai T, Andersson PO, Käll M (2015) Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography. Nanoscale 7(21):9405–9410

    Article  CAS  Google Scholar 

  6. Yang D, Chen S, Huang P, Wang X, Jiang W, Pandoli O, Cui D (2010) Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chem 12(11):2038–2042

    Article  CAS  Google Scholar 

  7. Wang X, Yang D, Huang P, Li M, Li C, Chen D, Cui D (2012) Hierarchically assembled au microspheres and sea urchin-like architectures: formation mechanism and SERS study. Nanoscale 4(24):7766–7772

    Article  CAS  Google Scholar 

  8. Cowcher DP, Xu Y, Goodacre R (2013) Portable, quantitative detection of Bacillus bacterial spores using surface-enhanced Raman scattering. Anal Chem 85(6):3297–3302

    Article  CAS  Google Scholar 

  9. Chan T, Liu T, Wang K, Tsai K, Chen Z, Chang Y, Tseng Y, Wang C, Wang J, Wang (2015) SERS detection of biomolecules by highly sensitive and reproducible Raman-enhancing nanoparticle array. Nanoscale Res Lett 12(1):344

  10. Qiu Z, Shu J, Tang D (2018) Near-infrared-to-ultraviolet light-mediated Photoelectrochemical Aptasensing platform for Cancer biomarker based on Core–Shell NaYF4:Yb,tm@TiO2 Upconversion microrods. Anal Chem 90(1):1021–1028

    Article  CAS  Google Scholar 

  11. Shu J, Qiu Z, Lv S, Zhang K, Tang D (2018) Plasmonic enhancement coupling with defect-engineered TiO2–x: a mode for sensitive Photoelectrochemical biosensing. Anal Chem 90(4):2425–2429

    Article  CAS  Google Scholar 

  12. Lin Y, Zhou Q, Tang D (2017) Dopamine-loaded liposomes for in-situ amplified Photoelectrochemical immunoassay of AFB1 to enhance photocurrent of Mn2+-doped Zn3(OH)2V2O7 Nanobelts. Anal Chem 89(21):11803–11810

    Article  CAS  Google Scholar 

  13. Shu J, Tang D (2017) Current advances in quantum-dots-based Photoelectrochemical immunoassays. Chem Asian J 12(21):2780–2789

    Article  CAS  Google Scholar 

  14. Song C, Min L, Zhou N, Yang Y, Su S, Huang W, Wang L (2014) Synthesis of novel gold Mesoflowers as SERS tags for immunoassay with improved sensitivity. ACS Appl Mater Interfaces 6(24):21842–21850

    Article  CAS  Google Scholar 

  15. Kamińska A, Witkowska E, Winkler K, Dzięcielewski I, Weyher JL, Waluk J (2015) Detection of hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron 66:461–467

    Article  Google Scholar 

  16. Zengin A, Tamer U, Caykara T (2017) SERS detection of hepatitis B virus DNA in a temperature-responsive sandwich-hybridization assay. J Raman Spectrosc 48(5):668–672

    Article  CAS  Google Scholar 

  17. Gao W, Li B, Yao R, Li Z, Wang X, Dong X, Zhou B (2017) Intuitive label-free SERS detection of Bacteria using aptamer-based in situ ag nanoparticles synthesis. Anal Chem 89(18):9836–9842

    Article  CAS  Google Scholar 

  18. Zhou H, Yang D, Ivleva N-P, Mircescu N-E, Niessner R, Haisch C (2014) SERS detection of Bacteria in water by in situ coating with ag nanoparticles. Anal Chem 86(3):1525–1533

    Article  CAS  Google Scholar 

  19. Alula MT, Krishnan S, Hendricks NR, Karamchand L, Blackburn JM (2017) Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchim Acta 184(1):219–227

    Article  CAS  Google Scholar 

  20. Fan W, Lee Y, Pedireddy S, Zhang Q, Liu T, Ling X (2014) Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale 6(9):4843–4851

    Article  CAS  Google Scholar 

  21. Chua C, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312

    Article  CAS  Google Scholar 

  22. Wang X, Huang P, Feng L, He M, Guo S, Shen G, Cui D (2012) Green controllable synthesis of silver nanomaterials on graphene oxide sheets via spontaneous reduction. RSC Adv 2(9):3816–3822

    Article  CAS  Google Scholar 

  23. Yang D, Cui D (2008) Advances and prospects of gold Nanorods. Chem Asian J 3(12):2010–2022

    Article  CAS  Google Scholar 

  24. Wang X, Li Y, Wang H, Fu Q, Peng J, Wang Y, Du J, Zhou Y, Zhan L (2010) Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens Bioelectron 26(2):404–410

    Article  Google Scholar 

  25. Nikoobakht B, El-Sayed M (2003) Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  CAS  Google Scholar 

  26. Qu F, Liu Y, Kong R, You J (2017) A versatile DNA detection scheme based on the quenching of fluorescent silver nanoclusters by MoS2 nanosheets: application to aptamer-based determination of hepatitis B virus and of dopamine. Microchim Acta 184(11):4417–4424

    Article  CAS  Google Scholar 

  27. Hakonen A, Strömberg N (2012) Diffusion consistent calibrations for improved chemical imaging using nanoparticle enhanced optical sensors. Analyst 137(2):315–321

    Article  CAS  Google Scholar 

  28. Shen J, Zhou Y, Fu F, Xu H, Lv J, Xiong Y, Wang A (2015) Immunochromatographic assay for quantitative and sensitive detection of hepatitis B virus surface antigen using highly luminescent quantum dot-beads. Talanta 142:145–149

    Article  CAS  Google Scholar 

  29. Narang J, Singhal C, Malhotra N, Narang S, Pn AK, Gupta R, Kansal R, Pundir CS (2016) Impedimetric genosensor for ultratrace detection of hepatitis B virus DNA in patient samples assisted by zeolites and MWCNT nanocomposites. Biosens Bioelectron 86:566–574

    Article  CAS  Google Scholar 

  30. Babamiri B, Hallaj R, Salimi A (2018) Ultrasensitive electrochemiluminescence immunosensor for determination of hepatitis B virus surface antigen using CdTe@CdS-PAMAM dendrimer as luminescent labels and Fe3O4 nanoparticles as magnetic beads. Sensor Actuat B-Chem 254:551–560

    Article  CAS  Google Scholar 

  31. Zhan L, Zhen S-J, Wan X-Y, Gao P-F, Huang C-Z (2016) A sensitive sueface-enhanced Raman scattering enzyme-catalyzed immunoassay of respiratory syncytial virus. Talanta 148:308–312

    Article  CAS  Google Scholar 

  32. Kearns H, Goodacre R, Jamieson LE, Graham D, Faulds K (2017) SERS detection of multiple anti-microbial resistant pathogens using nanosensors. Anal Chem 89(23):12666–12673

    Article  CAS  Google Scholar 

  33. Huang K, Li J, Liu Y, Cao X, Yu S, Yu M (2012) Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a Nafion-cysteine conjugate. Microchim Acta 177(3–4):419–426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81472001, 31400851), the Minjiang Scholars Program of Fujian Province, the Tongjiang Scholars Program of Quanzhou City, the Fourth Health Education Joint Development Project of Fujian Province (WKJ-2016-2-36). Natural Science Foundation of Fujian Province (2015 J05030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Peng Yang, Xiansong Wang or Daxiang Cui.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zheng, C., Cui, M. et al. Graphene oxide wrapped with gold nanorods as a tag in a SERS based immunoassay for the hepatitis B surface antigen. Microchim Acta 185, 458 (2018). https://doi.org/10.1007/s00604-018-2989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2989-x

Keywords

Navigation