Skip to main content
Log in

A hollow microporous organic network as a fiber coating for solid-phase microextraction of short-chain chlorinated hydrocarbons

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A solid-phase microextraction (SPME) fiber coated with a hollow microporous organic network (H-MON) was fabricated for the analysis of short-chain chlorinated paraffins (SCCPs). The sorbent was prepared by reacting tetra(4-ethynylphenyl)methane and 1,4-diiodobenzene using bis-(triphenylphosphine) palladium(II) as the catalyst in the presence of silica sphere templates, which then were removed by hydrofluoric acid. The SCCPs were quantified by GC-MS working in the negative chemical ionization mode. The H-MON has a high specific surface (701 m2·g−1) and microporosity (pore size <2 nm). Extraction temperature, extraction time, and ionic strength of the sample solutions were optimized by using the Box-Behnken design. The head-space SPME exhibits better extraction performance than the direct immersion mode. Under optimal working conditions, the detection limit (3 times of the standard deviation) is 0.03 ng·mL−1 in the water samples. Response is linear in the 0.05–10 ng·mL−1 concentration range. Repeatability and reproducibility, expressed as the relative standard deviations, ranged from 4.6 to 11.0%. The method was successfully applied in the analysis of SCCPs in water, sediments, organisms, and atmospheric particulate matter samples.

Schematic of the fabrication of a hollow microporous organic network (H-MON) on stainless steel fibers for use in SPME. The method was applied to the determination of short-chain chlorinated paraffins in biological, environmental water and atmospheric particulate matter (PM2.5) samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  2. Spietelun A, Kloskowski A, Chrzanowski W, Namiesnik J (2013) Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem Rev 113:1667–1685

    Article  CAS  PubMed  Google Scholar 

  3. Souza-Silva EA, Jiang R, Rodriguez-Lafuente A, Gionfriddo E, Pawliszyn J (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Anal Chem 71:224–235

    Article  CAS  Google Scholar 

  4. Souza-Silva EA, Gionfriddo E, Pawliszyn J (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. Trends Anal Chem 71:236–248

    Article  CAS  Google Scholar 

  5. Souza-Silva EA, Reyes-Garces N, Gomez-Rios GA, Boyaci E, Bojko B, Pawliszyn J (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices III. Biological analysis. Trends Anal Chem 71:249–264

    Article  CAS  Google Scholar 

  6. Ouyang GF, Vuckovic D, Pawliszyn J (2011) Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev 111:2784–2814

    Article  CAS  PubMed  Google Scholar 

  7. Gu ZY, Yang CX, Chang N, Yan XP (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745

    Article  CAS  PubMed  Google Scholar 

  8. Xu J, Zheng J, Tian J, Zhu F, Zeng F, Su C, Ouyang G (2013) New materials in solid-phase microextraction. Trends Anal Chem 47:68–83

    Article  CAS  Google Scholar 

  9. Bagheri H, Manouchehri M, Allahdadlalouni M (2017) A magnetic multifunctional dendrimeric coating on a steel fiber for solid phase microextraction of chlorophenols. Microchim Acta 184:2201–2209

    Article  CAS  Google Scholar 

  10. Wang W, Li Z, Wang W, Zhang L, Zhang S, Wang C, Wang Z (2017) Microextraction of polycyclic aromatic hydrocarbons by using a stainless steel fiber coated with nanoparticles made from a porous aromatic framework. Microchim Acta 185:20–30

    Article  CAS  Google Scholar 

  11. Wu T, Wang J, Liang W, Zang X, Wang C, Wu Q, Wang Z (2017) Single layer graphitic carbon nitride-modified graphene composite as a fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons. Microchim Acta 184:2171–2180

    Article  CAS  Google Scholar 

  12. Tomy GT, Stern GA, Muir DCG, Fisk AT, Cymbalisty CD, Westmore JB (1997) Quantifying C10-C13 polychloroalkanes in environmental samples by high-resolution gas chromatography/electron capture negative ion high-resolution mass spectrometry. Anal Chem 69:2762–2771

    Article  CAS  Google Scholar 

  13. Bayen S, Obbard JP, Thomas GO (2006) Chlorinated paraffins: a review of analysis and environmental occurrence. Environ Int 32:915–929

    Article  CAS  PubMed  Google Scholar 

  14. Huang H, Gao L, Xia D, Qiao L, Wang R, Su G, Liu W, Liu G, Zheng M (2017) Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM10/PM2.5/PM1.0 in Beijing, China. Environ Pollut 225:674–680

    Article  CAS  PubMed  Google Scholar 

  15. Qiao L, Gao L, Xia D, Huang H, Zheng M (2017) Short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yangtze River: spatial distributions, source apportionment and risk assessment. Sci Total Environ 575:1177–1182

    Article  CAS  PubMed  Google Scholar 

  16. Zeng L, Wang T, Wang P, Liu Q, Han S, Yuan B, Zhu N, Wang Y, Jiang G (2011) Distribution and trophic transfer of short-chain chlorinated paraffins in an aquatic ecosystem receiving effluents from a sewage treatment plant. Environ Sci Technol 45:5529–5535

    Article  CAS  PubMed  Google Scholar 

  17. Ma X, Zhang H, Wang Z, Yao Z, Chen J, Chen J (2014) Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China. Environ Sci Technol 48:5964–5971

    Article  CAS  PubMed  Google Scholar 

  18. UNEP (2017) Stockholm convention on persistent organic pollutants. eighth meeting May

  19. Castells P, Santos FJ, Galceran MT (2004) Solid-phase extraction versus solid-phase microextraction for the determination of chlorinated paraffins in water using gas chromatography–negative chemical ionisation mass spectrometry. J Chromatogr A 1025:157–162

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Yin G, Du X, Xu M, Qiu Y, Ahlqvist P, Chen Q, Zhao J (2018) Short-chain chlorinated paraffins (SCCPs) in a freshwater food web from Dianshan Lake: occurrence level, congener pattern and trophic transfer. Sci Total Environ 615:1010–1018

    Article  CAS  PubMed  Google Scholar 

  21. Eljarrat E, Barcelo D (2006) Quantitative analysis of polychlorinated n-alkanes in environmental samples. TrAC Trends Anal Chem 25:421–434

    Article  CAS  Google Scholar 

  22. Castells P, Santos FJ, Galceran MT (2003) Solid-phase microextraction for the analysis of short-chain chlorinated paraffins in water samples. J Chromatogr A 984:1–8

    Article  CAS  PubMed  Google Scholar 

  23. Gandolfi F, Malleret L, Sergent M, Doumenq P (2015) Parameters optimization using experimental design for headspace solid phase micro-extraction analysis of short-chain chlorinated paraffins in waters under the European water framework directive. J Chromatogr A 1406:59–67

    Article  CAS  PubMed  Google Scholar 

  24. Chun J, Kang S, Kang N, Lee SM, Kim HJ, Son SU (2013) Microporous organic networks bearing metal-salen species for mild CO2 fixation to cyclic carbonates. J Mater Chem A 1:5517

    Article  CAS  Google Scholar 

  25. Kang N, Park JH, Jin M, Park N, Lee SM, Kim HJ, Kim JM, Son SU (2013) Microporous organic network hollow spheres: useful templates for nanoparticulate co3o4 hollow oxidation catalysts. J Am Chem Soc 135:19115–19118

    Article  CAS  PubMed  Google Scholar 

  26. Ko JH, Kang N, Park N, Shin H-W, Kang S, Lee SM, Kim HJ, Ahn TK, Son SU (2015) Hollow microporous organic networks bearing triphenylamines and anthraquinones: diffusion pathway effect in visible light-driven oxidative coupling of benzylamines. ACS Macro Lett 4:669–672

    Article  CAS  Google Scholar 

  27. Jia Y, Su H, Wang Z, Wong YE, Chen X, Wang M, Chan TD (2016) Metal-organic framework@microporous organic network as adsorbent for solid-phase microextraction. Anal Chem 88:9364–9367

    Article  CAS  PubMed  Google Scholar 

  28. Chinchilla R, Na’jera C (2007) The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem Rev 107:874–922

    Article  CAS  PubMed  Google Scholar 

  29. Stober W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  30. Reth M, Zencak Z, Oehme M (2005) New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry. J Chromatogr A 1081:225–231

    Article  CAS  PubMed  Google Scholar 

  31. Reth M, Oehme M (2004) Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins. Anal Bioanal Chem 378:1741–1747

    Article  CAS  PubMed  Google Scholar 

  32. Jiang JX, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Conjugated microporous poly (aryleneethynylene) networks. Angew Chem 119:8728–8732

    Article  Google Scholar 

  33. Yang S, Li Y, Wang S, Wang M, Chu M, Xia B (2018) Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review. Microchim Acta 185:112

    Article  CAS  Google Scholar 

  34. Chaemfa C, Xu Y, Li J, Chakraborty P, Hussain Syed J, Naseem Malik R, Wang Y, Tian C, Zhang G, Jones KC (2014) Screening of atmospheric short- and medium-chain chlorinated paraffins in India and Pakistan using polyurethane foam based passive air sampler. Environ Sci Technol 48:4799–4808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (21777089), Natural Science Foundation of Shandong Province (ZR2018MB040),Key Research and Development Program of Shandong Province (2017GSF17107, 2017CXGC0223 and 2018GSF117036), Fundamental Research Funds of Shandong Academy of Sciences, and Funds for Fostering Distinguished Young Scholar of Shandong Academy of Sciences are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Chen.

Ethics declarations

The author (s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, H., Zhao, Y. et al. A hollow microporous organic network as a fiber coating for solid-phase microextraction of short-chain chlorinated hydrocarbons. Microchim Acta 185, 416 (2018). https://doi.org/10.1007/s00604-018-2955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2955-7

Keywords

Navigation