Skip to main content
Log in

Colorimetric determination of BCR/ABL fusion genes using a nanocomposite consisting of Au@Pt nanoparticles covered with a PAMAM dendrimer and acting as a peroxidase mimic

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric assay is described for the detection of BCR/ABL fusion genes. Polyamidoamine (PAMAM) dendrimers were placed on peroxidase (POx) mimicking Au@Pt nanoparticles to form a nanocomposite of type Au@Pt-PAMAM. Capture DNA probe is a designed nucleic acid strand that specifically binds target DNA to the surface of the electrode. The capture probe was attached to magnetic beads via biotin and avidin interaction. The hairpin structure of the capture probe can only be opened by the complementary BCR/ABL DNA. This results in a highly specific assay. The POx-mimicking property of the Au@Pt-PAMAM causes the formation of a blue dye by reaction of H2O2 and 3,3,3′,3′-tetramethylbenzidine (TMB) which is measured by a microplate reader. Under optimum conditions, the absorbance increases linearly the 1 pM to 100 nM BCR/ABL concentration range, and the detection limit is as low as 190 fM. The method is highly selective and was successfully applied to the determination of fusion genes in spiked real samples. Conceivably, it possesses a large potential in clinical testing of patients suffering from chronic myeloid leukemia.

Au@PtNP, an efficient catalyst, is bound with polyamidoamine (PAMAM) dendrimer to amplify the colorimetric signal. With the introduction of streptavidin-magnetic beads to remove non-specific signals, a novel colorimetric sensor is constructed to detect BCR/ABL fusion genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chang H, Sutherland R, Nayar R, Li D, Kamel-Reid S, Mile MA, Messner H, Lipton J (2004) Chronic lymphocytic leukemia in the course of chronic myelocytic leukemia: evidence of independent clonal origin as shown by interphase fluorescence in situ hybridization and fluorescence-activated cell sorting. Cancer Genet Cytogenet 152(2):146–148

    Article  CAS  PubMed  Google Scholar 

  2. Jabbour EJ, Cortes JE, Kantarjian HM (2013) Resistance to tyrosine kinase inhibition therapy for chronic myelogenous leukemia: a clinical perspective and emerging treatment options. Clin Lymphoma Myeloma Leuk 13(5):515–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo JQ, Lin H, Kantarjian H, Talpaz M, Champlin R, Andreeff M, Glassman A, Arlinghaus RB (2002) Comparison of competitive-nested PCR and real-time PCR in detecting BCR-ABL fusion transcripts in chronic myeloid leukemia patients. Leukemia 16(12):2447–2453

    Article  CAS  PubMed  Google Scholar 

  4. Bartley PA, Latham S, Budgen B, Ross DM, Hughes E, Branford S, White D, Hughes TP, Morley AA (2015) A DNA real-time quantitative PCR method suitable for routine monitoring of low levels of minimal residual disease in chronic myeloid leukemia. J Mol Diagn 17(2):185–192

    Article  CAS  PubMed  Google Scholar 

  5. Kim DW (2011) Recent advances in the path toward the cure for chronic myeloid leukemia. Korean J Hematol 46(3):169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartley PA, Ross DM, Latham S, Martin-Harris MH, Budgen B, Wilczek V, Branford S, Hughes TP, Morley AA (2010) Sensitive detection and quantification of minimal residual disease in chronic myeloid leukaemia using nested quantitative PCR for BCR-ABL DNA. Int J Lab Hematol 32(6 Pt 1):e222–e228

    Article  CAS  PubMed  Google Scholar 

  7. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121(1):396–409

    Article  CAS  PubMed  Google Scholar 

  8. D'Alessio F, Mirabelli P, Mariotti E, Raia M, Di Noto R, Fortunato G, Camera A, Del Vecchio L (2011) Miniaturized flow cytometry-based BCR-ABL immunoassay in detecting leptomeningeal disease. Leuk Res 35(10):1290–1293

    Article  CAS  PubMed  Google Scholar 

  9. Miao R, Mu L, Zhang H, She G, Zhou B, Xu H, Wang P, Shi W (2014) Silicon nanowire-based fluorescent nanosensor for complexed Cu2+ and its bioapplications. Nano Lett 14(6):3124–3129

    Article  CAS  PubMed  Google Scholar 

  10. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074

    Article  CAS  PubMed  Google Scholar 

  11. He SB, Wu GW, Deng HH, Liu AL, Lin XH, Xia XH, Chen W (2014) Choline and acetylcholine detection based on peroxidase-like activity and protein antifouling property of platinum nanoparticles in bovine serum albumin scaffold. Biosens Bioelectron 62:331–336

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Yuan Y, Bixie S, Chai Y, Yuan R (2014) Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA-PtNPs dendrimer as a synergetic signal amplification label. Biosens Bioelectron 60:224–230

    Article  CAS  PubMed  Google Scholar 

  13. Tseng CW, Chang HY, Chang JY, Huang CC (2012) Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 4(21):6823–6830

    Article  CAS  PubMed  Google Scholar 

  14. Wu Z, Fu Q, Yu S, Sheng L, Xu M, Yao C, Xiao W, Li X, Tang Y (2016) Pt@AuNPs integrated quantitative capillary-based biosensors for point-of-care testing application. Biosens Bioelectron 85:657–663

    Article  CAS  PubMed  Google Scholar 

  15. Xu N, Meng L, Li HW, Lu DY, Wu Y (2018) Polyethyleneimine capped bimetallic Au/Pt nanoclusters are a viable fluorescent probe for specific recognition of chlortetracycline among other tetracycline antibiotics. Mikrochim Acta 185(6):294

    Article  CAS  PubMed  Google Scholar 

  16. Zhou D, Xie G, Cao X, Chen X, Zhang X, Chen H (2016) Colorimetric determination of staphylococcal enterotoxin B via DNAzyme-guided growth of gold nanoparticles. Microchim Acta 183(10):2753–2760

    Article  CAS  Google Scholar 

  17. Daftarian P, Kaifer AE, Li W, Blomberg BB, Frasca D, Roth F, Chowdhury R, Berg EA, Fishman JB, Al Sayegh HA, Blackwelder P, Inverardi L, Perez VL, Lemmon V, Serafini P (2011) Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res 71(24):7452–7462

    Article  CAS  PubMed  Google Scholar 

  18. Cevik E, Bahar O, Senel M, Abasiyanik MF (2016) Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers. Biosens Bioelectron 86:1074–1079

    Article  CAS  PubMed  Google Scholar 

  19. Salih T, Ahlford A, Nilsson M, Plichta Z, Horák D (2016) Streptavidin-modified monodispersed magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols. Mater Sci Eng C 61:362–367

    Article  CAS  Google Scholar 

  20. Wang L, Hua E, Liang M, Ma C, Liu Z, Sheng S, Liu M, Xie G, Feng W (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207

    Article  CAS  PubMed  Google Scholar 

  21. Borovok N, Iram N, Zikich D, Ghabboun J, Livshits GI, Porath D, Kotlyar AB (2008) Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidin-biotin recognition. Nucleic Acids Res 36(15):5050–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Research Foundation of China (No.81572060、No.81500129), Scientific and Technological Research Program of Chongqing Municipal Education Commission (No.KJ1500215) and Chongqing Postgraduate Research and innovation project (No.CYS15120, No.CYS16136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Feng.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Shen, H., Tang, S. et al. Colorimetric determination of BCR/ABL fusion genes using a nanocomposite consisting of Au@Pt nanoparticles covered with a PAMAM dendrimer and acting as a peroxidase mimic. Microchim Acta 185, 401 (2018). https://doi.org/10.1007/s00604-018-2940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2940-1

Keywords

Navigation