Skip to main content
Log in

A nickel nanoparticle/nafion-graphene oxide modified screen-printed electrode for amperometric determination of chemical oxygen demand

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nickel nanoparticle/nafion-graphene oxide (NiNP/Nf-GO) modified screen-printed electrode (SPE) was developed for rapid and environmentally friendly electrochemical determination of chemical oxygen demand (COD). The morphology and the electrochemical performance of the SPEs with different surface modifications were investigated by scanning electron microscopy, electrochemical impedance spectroscopy, amperometry, and cyclic voltammetry, respectively. Interestingly, incorporation of graphene oxide as supporting materials to the NiNP/Nf-GO modified SPE enables high catalyst loading and electrode contact, leading to excellent electrocatalytic oxidation ability. A flow detection system was constructed based the newly designed NiNP/Nf-GO modified SPE with USB connection, a 3D-printed thin-layer flow cell (TLFC), and a peristaltic pump. The flow detection system showed an excellent performance for COD analysis with a linear detection range of 0.1~400 mg L−1 and a lower detection limit of 0.05 mg L−1 with an oxidation potential of 0.45 V. The system was further applied to determine the COD in surface water samples. The results were consistent with those obtained by using the standard method (ISO 6060).

A novel nickel nanoparticle/nafion-graphene oxide (NiNP/Nf-GO) modified screen-printed electrode (SPE) with excellent electrocatalytic oxidation ability was designed and fabricated. This electrode with USB connection was applied in a flow detection system equipped with a 3D-printed thin-layer flow cell and a peristaltic pump for environmentally friendly electrochemical determination of chemical oxygen demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sawyer CN, McCarty PL, Parkin GF (2003) Chemistry for environmental engineering and science, 5th edn. McGraw-Hill, New York

    Google Scholar 

  2. Clesceri LS, Eaton AD, Greenberg AE (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC p 2320D

    Google Scholar 

  3. Geerdink RB, Sebastiaan van den Hurk R, Epema OJ (2017) Chemical oxygen demand: historical perspectives and future challenges. Anal Chim Acta 961:1–11

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Luo G, He L, Xu J, Lyu J (2018) Analytical approaches for determining chemical oxygen demand in water bodies: a review. Crit Rev Anal Chem 48(1):47–65

    Article  CAS  PubMed  Google Scholar 

  5. Yu H, Ma C, Quan X, Chen S, Zhao H (2009) Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode. Environ Sci Technol 43(6):1935–1939

    Article  CAS  PubMed  Google Scholar 

  6. Gutiérrez-Capitán M, Baldi A, Gómez R, García V, Jiménez-Jorquera C, Fernández-Sánchez C (2015) Electrochemical Nanocomposite-derived sensor for the analysis of chemical oxygen demand in urban wastewaters. Anal Chem 87(4):2152–2160

    Article  CAS  PubMed  Google Scholar 

  7. Balconi ML, Borgarello M, Ferraroli R, Realini F (1992) Chemical oxygen demand determination in well and river waters by flow-injection analysis using a microwave oven during the oxidation step. Anal Chim Acta 261(1–2):295–299

    Article  CAS  Google Scholar 

  8. Canals A, Del Remedio Hernandez M (2002) Ultrasound-assisted method for determination of chemical Qxygen demand. Anal Bioanal Chem 374(6):1132–1140

    Article  CAS  PubMed  Google Scholar 

  9. Zhang S-Q, Li L-H, Zhao H-J (2009) A portable Photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters. Environ Sci Technol 43(20):7810–7815

    Article  CAS  PubMed  Google Scholar 

  10. Mu Q-H, Li Y-G, Zhang Q-H, Wang H-Z (2011) TiO2 Nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via Photoelectrocatalysis. Sens Actuators, B: Chem 155(2):804–809

    Article  CAS  Google Scholar 

  11. Zheng Q, Zhou B, Bai J, Li L, Jin Z, Zhang J, Li J, Liu Y, Cai W, Zhu X (2008) Self-organized TiO2 nanotube Array sensor for the determination of chemical oxygen demand. Adv Mater 20(5):1044–1049

    Article  CAS  Google Scholar 

  12. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11–12):1857–1862

    Article  CAS  Google Scholar 

  13. Cui YH, Li XY, Chen GH (2009) Electrochemical degradation of Bisphenol a on different anodes. Water Res 43(7):1968–1976

    Article  CAS  PubMed  Google Scholar 

  14. Rössler-Fromme R, Scholz F (1996) A solid composite electrode for the determination of the electrochemical oxygen demand of aqueous samples. Freseniuś J Anal Chem 356(3–4):197–201

    Google Scholar 

  15. Ai S, Gao M, Yang Y, Li J, Jin L (2004) Electrocatalytic sensor for the determination of chemical oxygen demand using a lead dioxide modified electrode. Electroanalysis 16(5):404–409

    Article  CAS  Google Scholar 

  16. Li J, Li L, Zheng L, Xian Y, Ai S, Jin L (2005) Amperometric determination of chemical oxygen demand with flow injection analysis using F-PbO2 modified electrode. Anal Chim Acta 548:199–204

    Article  CAS  Google Scholar 

  17. Orozco J, Fernández-Sánchez C, Mendoza E, Baeza M, Cespedes F, Jimenez-Jorquera C (2008) Composite planar electrode for sensing electrochemical oxygen demand. Anal Chim Acta 607(2):176–182

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Yao N, Li M, Hu J, Chen J, Hao Q, Wu K, Zhou Y (2015) Electrochemical tuning of the activity and structure of a copper- cobalt micro-nano film on a gold electrode, and its application to the determination of glucose and of chemical oxygen demand. Electrochim Acta 182:515–522

    CAS  Google Scholar 

  19. Mo H, Tang Y, Wang X et al (2015) Development of a three-dimensional structured carbon Fiber felt/β-PbO2 electrode and its application in chemical oxygen demand determination. Electrochim Acta 176:1100–1107

    Article  CAS  Google Scholar 

  20. Yang J, Chen J, Zhou Y, Wu K (2011) A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sensors Actuators B 153(1):78–82

    Article  CAS  Google Scholar 

  21. Yu H, Wang H, Quan X, Chen S, Zhang Y (2007) Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor. Electrochem Commun 9(9):2280–2285

    Article  CAS  Google Scholar 

  22. Krittayavathananon A, Sawangphruk M (2017) Impedimetric sensor of ss-HSDNA/reduced graphene oxide aerogel electrode toward aflatoxin B1 detection: effects of redox mediator charges and hydrodynamic diffusion. Anal Chem 89(24):13283–13289

    Article  CAS  PubMed  Google Scholar 

  23. Sun Q, Wang J, Tang M, Huang L, Zhang Z, Liu C, Lu X, Hunter KW, Chen G (2017) A new electrochemical system based on a flow-field shaped solid electrode and 3D-printed thin-layer flow cell: detection of Pb2+ ions by continuous flow accumulation square-wave anodic stripping voltammetry. Anal Chem 89(9):5024–5029

    Article  CAS  PubMed  Google Scholar 

  24. Cheng Q, Wu C, Chen J, Zhou Y, Wu K (2011) Electrochemical tuning the activity of nickel nanoparticle and application in sensitive detection of chemical oxygen demand. J Phys Chem C 115(46):22845–22850

    Article  CAS  Google Scholar 

  25. Bunch JS, Zande van der AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493

    Article  CAS  PubMed  Google Scholar 

  26. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  PubMed  Google Scholar 

  27. Park JC, Lee HJ, Kim JY, Park KH, Song H (2010) Catalytic hydrogen transfer of ketones over Ni@SiO2 yolk−Shell Nanocatalysts with tiny metal cores. J Phys Chem C 114(14):6381–6388

    Article  CAS  Google Scholar 

  28. Huo SJ, Xue XK, Li QX, Ma M, Cai WB, Xu QJ, Osawa M (2006) Extending in situ attenuated-Total-reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes. J Phys Chem B 110(9):4162–4169

    Article  CAS  PubMed  Google Scholar 

  29. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 Nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  CAS  PubMed  Google Scholar 

  30. Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H (2012) Oxygen reduction Electrocatalyst based on strongly coupled cobalt oxide Nanocrystals and carbon nanotubes. J Am Chem Soc 134(38):15849–15857

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Duan J, Ran J, Jaroniec M, Qiao SZ (2013) N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy Environ Sci 6:3693–3699

    Article  CAS  Google Scholar 

  32. Gan T, Sun J, Wu Q, Jing Q, Yu S (2013) Graphene decorated with nickel nanoparticles as a sensitive substrate for simultaneous determination of sunset yellow and Tartrazine in food samples. Electroanalysis 25(6):1505–1512

    Article  CAS  Google Scholar 

  33. Jia L-P, Wang H-S (2013) Preparation and application of a highly sensitive nonenzymatic ethanol sensor based on nickel nanoparticles/Nafion/Graphene composite film. Sens Actuators B: Chem 177:1035–1042

    Article  CAS  Google Scholar 

  34. MacDougall D, Crummett WB (1980) Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem 52(14):2242–2249

    Article  CAS  Google Scholar 

  35. Zhou YS, Jing T, Hao QL, Zhou YK, Mei SR (2012) A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode. Electrochim Acta 74:165–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Huang or Guosong Chen.

Ethics declarations

The authors declare that they have no competing interest.

Electronic supplementary material

ESM 1

(DOCX 1.95 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Huang, L., Tang, M. et al. A nickel nanoparticle/nafion-graphene oxide modified screen-printed electrode for amperometric determination of chemical oxygen demand. Microchim Acta 185, 385 (2018). https://doi.org/10.1007/s00604-018-2917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2917-0

Keywords

Navigation