Skip to main content
Log in

Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

It is found that the fluorescence of carbon dots (CD) with an emission peak at 459 nm is strongly quenched by silver nanoparticles (AgNPs) with their absorption peak at 430 nm. The finding was applied in a fluorescence quenchometric lateral flow immunochromatographic assay for detection of zearalenone (ZEN) with CDs conjugated to ovalbumin (OVA) as donor signal probe and AgNP-Ab as acceptor signal probe. The assay has an LOD of 0.1 μg·L−1 for ZEN. This is 10 times better than the respective “turn-off” AgNP-based LFIA. In case of cereal samples and their products, the LODs range from 1 to 2.5 μg·kg−1. Only minor cross reactivity is found for fusarium toxins, and no cross-sensitivity for aflatoxin B1, T-2 mycotoxin, ochratoxin A, deoxynivalenol, and fumonisin B1. The assay represents a simple, sensitive, and rapid tool for determination of ZEN in cereal samples and their products.

Schematic presentation of fluorescence quenching lateral flow immunochromatographic assay (FLFIA) based on carbon dots (CD) and silver nanoparticle (AgNP) fluorescence resonance energy transfer (FRET) system for the rapid high sensitive detection of zearalenone (ZEN) in cereal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516. https://doi.org/10.1128/cmr.16.3.497-516.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hussein HS, Brasel JM (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167(2):101

    Article  CAS  PubMed  Google Scholar 

  3. Pang J, Zhou Q, Sun X, Li L, Zhou B, Zeng F, Zhao Y, Shen W, Sun Z (2017) Effect of low-dose zearalenone exposure on reproductive capacity of male mice. Toxicol Appl Pharmacol 333:60–67. https://doi.org/10.1016/j.taap.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  4. Wozny M, Obremski K, Zalewski T, Mommens M, Lakomiak A, Brzuzan P (2017) Transfer of zearalenone to the reproductive system of female rainbow trout spawners: a potential risk for aquaculture and fish consumers? Food Chem Toxicol 107(Pt A):386–394. https://doi.org/10.1016/j.fct.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  5. Abassi H, Ayed-Boussema I, Shirley S, Abid S, Bacha H, Micheau O (2016) The mycotoxin zearalenone enhances cell proliferation, colony formation and promotes cell migration in the human colon carcinoma cell line HCT116. Toxicol Lett 254:1–7. https://doi.org/10.1016/j.toxlet.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  6. Gajecka M, Zielonka L, Gajecki M (2016) Activity of Zearalenone in the porcine intestinal tract. Molecules 22(1). https://doi.org/10.3390/molecules22010018

  7. Smith MC, Madec S, Pawtowski A, Coton E, Hymery N (2017) Individual and combined toxicological effects of deoxynivalenol and zearalenone on human hepatocytes in in vitro chronic exposure conditions. Toxicol Lett 280:238–246. https://doi.org/10.1016/j.toxlet.2017.08.080

    Article  CAS  PubMed  Google Scholar 

  8. Vogelgsang S, Musa T, Banziger I, Kagi A, Bucheli TD, Wettstein FE, Pasquali M, Forrer HR (2017) Fusarium mycotoxins in Swiss wheat: a survey of Growers' samples between 2007 and 2014 shows strong year and minor geographic effects. Toxins 9(8). https://doi.org/10.3390/toxins9080246

  9. Chen F, Luan C, Wang L, Wang S, Shao L (2017) Simultaneous determination of six mycotoxins in peanut by high-performance liquid chromatography with a fluorescence detector. J Sci Food Agric 97(6):1805–1810. https://doi.org/10.1002/jsfa.7978

    Article  CAS  PubMed  Google Scholar 

  10. De Santis B, Debegnach F, Gregori E, Russo S, Marchegiani F, Moracci G, Brera C (2017) Development of a LC-MS/MS method for the multi-mycotoxin determination in composite cereal-based samples. Toxins 9(5). https://doi.org/10.3390/toxins9050169

  11. Toda K, Kokushi E, Uno S, Shiiba A, Hasunuma H, Fushimi Y, Wijayagunawardane MPB, Zhang C, Yamato O, Taniguchi M, Fink-Gremmels J, Takagi M (2017) Gas chromatography-mass spectrometry for metabolite profiling of Japanese black cattle naturally contaminated with Zearalenone and Sterigmatocystin. Toxins 9(10). https://doi.org/10.3390/toxins9100294

  12. Maragos CM, Appell M (2007) Capillary electrophoresis of the mycotoxin zearalenone using cyclodextrin-enhanced fluorescence. J Chromatogr A 1143(1-2):252–257. https://doi.org/10.1016/j.chroma.2006.12.085

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Fu Q, Li D, Xie J, Ke D, Song Q, Tang Y, Wang H (2017) A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone. Anal Bioanal Chem 409(28):6567–6574

    Article  CAS  PubMed  Google Scholar 

  14. Lv Y, Wu R, Feng K, Li J, Mao Q, Yuan H, Shen H, Chai X, Li LS (2017) Highly sensitive and accurate detection of C-reactive protein by CdSe/ZnS quantum dot-based fluorescence-linked immunosorbent assay. J Nanobiotechnol 15(1):35

    Article  Google Scholar 

  15. Liu N, Nie D, Tan Y, Zhao Z, Liao Y, Wang H, Sun C, Wu A (2016) An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim Acta 184(1):147–153

    Article  CAS  Google Scholar 

  16. Xu W, Qing Y, Chen S, Chen J, Qin Z, Qiu J, Li C (2017) Electrochemical indirect competitive immunoassay for ultrasensitive detection of zearalenone based on a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes and chitosan. Microchim Acta 184(9):3339–3347

    Article  CAS  Google Scholar 

  17. Zhang X, Yu X, Wen K, Li C, Mujtaba Mari G, Jiang H, Shi W, Shen J, Wang Z (2017) Multiplex Lateral Flow Immunoassays Based on Amorphous Carbon Nanoparticles for Detecting Three Fusarium Mycotoxins in Maize J Agric Food Chem 65(36): 8063-8071

  18. Goryacheva OA, Beloglazova NV, Vostrikova AM, Pozharov MV, Sobolev AM, Goryacheva IY (2017) Lanthanide-to-quantum dot Forster resonance energy transfer (FRET): application for immunoassay. Talanta 164:377–385. https://doi.org/10.1016/j.talanta.2016.11.054

    Article  CAS  PubMed  Google Scholar 

  19. Fu Q, Liang J, Lan C, Zhou K, Shi C, Tang Y (2014) Development of a novel dual-functional lateral-flow sensor for on-site detection of small molecule analytes. Sensors Actuators B Chem 203:683–689. https://doi.org/10.1016/j.snb.2014.06.043

    Article  CAS  Google Scholar 

  20. Shi CY, Deng N, Liang JJ, Zhou KN, Fu QQ, Tang Y (2015) A fluorescent polymer dots positive readout fluorescent quenching lateral flow sensor for ractopamine rapid detection. Anal Chim Acta 854:202–208. https://doi.org/10.1016/j.aca.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  21. Zhang G, Chen M, Liu D, Xiong Y, Feng R, Zhong P, Lai W (2016) Quantitative detection of β2-adrenergic agonists using fluorescence quenching by immunochromatographic assay. Anal Methods 8(3):627–631. https://doi.org/10.1039/c5ay02585k

    Article  CAS  Google Scholar 

  22. Wang J, Cao F, He S, Xia Y, Liu X, Jiang W, Yu Y, Zhang H, Chen W (2018) FRET on lateral flow test strip to enhance sensitivity for detecting cancer biomarker. Talanta 176:444–449. https://doi.org/10.1016/j.talanta.2017.07.096

    Article  CAS  PubMed  Google Scholar 

  23. Shen, H., Xu, F., Xiao, M., Fu, Q., Cheng, Z., & Zhang, S., et al. (2017). A new lateral-flow immunochromatographic strip combined with quantum dot nanobeads and gold nanoflowers for rapid detection of tetrodotoxin. Analyst,142.https://doi.org/10.1039/C7AN01227F

  24. Hu G, Sheng W, Li S, Zhang Y, Wang J, Wang S (2017) Quantum dot based multiplex fluorescence quenching immune chromatographic strips for the simultaneous determination of sulfonamide and fluoroquinolone residues in chicken samples. RSC Adv 7(49):31123–31128. https://doi.org/10.1039/c7ra01753g

    Article  CAS  Google Scholar 

  25. Hu G, Sheng W, Li J, Zhang Y, Wang J, Wang S (2017) Fluorescent quenching immune chromatographic strips with quantum dots and upconversion nanoparticles as fluorescent donors for visual detection of sulfaquinoxaline in foods of animal origin. Anal Chim Acta 982:185–192. https://doi.org/10.1016/j.aca.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  26. Shamsipur M, Barati A, Karami S (2017) Long-wavelength, multicolor, and white-light emitting carbon-based dots: achievements made, challenges remaining, and applications. Carbon 124:429–472. https://doi.org/10.1016/j.carbon.2017.08.072

    Article  CAS  Google Scholar 

  27. Bu D, Zhuang H, Yang G, Ping X (2014) An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles. Sensors Actuators B Chem 195:540–548. https://doi.org/10.1016/j.snb.2014.01.079

    Article  CAS  Google Scholar 

  28. Thouvenot D, Morfin RF (1983) Radioimmunoassay for zearalenone and zearalanol in human serum: production, properties, and use of porcine antibodies. Appl Environ Microbiol 45(1):16

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 52(14):3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  30. Cao Y, Zheng R, Ji X, Liu H, Xie R, Yang W (2014) Syntheses and characterization of nearly monodispersed, size-tunable silver nanoparticles over a wide size range of 7-200 nm by tannic acid reduction. Langmuir the Acs Journal of Surfaces & Colloids 30(13):3876–3882

    Article  CAS  Google Scholar 

  31. Bao L, Zhang Z-L, Tian Z-Q, Zhang L, Liu C, Lin Y, Qi B, Pang D-W (2011) Electrochemical tuning of luminescent carbon Nanodots: from preparation to luminescence mechanism. Adv Mater 23(48):5801–5806. https://doi.org/10.1002/adma.201102866

    Article  CAS  PubMed  Google Scholar 

  32. Afzali D, Fathirad F (2016) Determination of zearalenone with a glassy carbon electrode modified with nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid. Microchim Acta 183(9):2633–2638. https://doi.org/10.1007/s00604-016-1907-3

    Article  CAS  Google Scholar 

  33. Li T, Kim BB, Shim W-B, Byun J-Y, Chung D-H, Shin Y-B, Kim M-G (2014) Homogeneous fluorescence resonance energy transfer immunoassay for the determination of Zearalenone. Anal Lett 47(3):453–464. https://doi.org/10.1080/00032719.2013.843186

    Article  CAS  Google Scholar 

  34. Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z (2018) Aptamer-based lateral flow test strip for rapid detection of Zearalenone in corn samples. J Agric Food Chem 66(8):1949–1954. https://doi.org/10.1021/acs.jafc.7b05326

    Article  CAS  PubMed  Google Scholar 

  35. Li SJ, Sheng W, Wen W, Gu Y, Wang JP, Wang S (2018) Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Mikrochimica acta 185(4):238. https://doi.org/10.1007/s00604-018-2778-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank The National Key R&D Program of China (No. 2016YFD0401202), Special Project of Tianjin Innovation Platform (No.17PTGCCX00230).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junping Wang or Shuo Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, J., Sheng, W. et al. Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Microchim Acta 185, 388 (2018). https://doi.org/10.1007/s00604-018-2916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2916-1

Keywords

Navigation