Skip to main content
Log in

A chemiluminescence-based catalase assay using H2O2-sensitive CdTe quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is described for the chemiluminescence based determination of the activity of catalase (CAT) using H2O2-sensitive CdTe quantum dots (QDs). It is based on the finding that the chemiluminescence (CL) of the CdTe/H2O2 system is reduced due to the consumption of H2O2 by the catalytic action of CAT. The Michaelis constant is calculated to be 519 ± 27 mM, showing the potential of the method to accurately measure the Km compared to the standard method. The method does not require QDs to be conjugated to biological/organic molecules and therefore is considered to be a rapid and convenient method for determination of CAT in real samples. At an incubation time of 2 s, the LOD was calculated to be 4.5 unit/mL, with a linear range from 6 to 400 unit/mL. The assay is sensitive, simple, and suitable for practical applications.

Schematic representation of chemiluminescence-based catalase U(CAT) assay using the CdSe QD/H2O2 system. The reduction of H2O2 is reflected by the chemiluminescence of the QDs. A mechanism is put forward based on the changes in chemiluminescence intensity of the QDs by the consumption of H2O2 due to the catalytic action of CAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang Y, Chen O, Angerhofer A, Cao YC (2006) Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J Am Chem Soc 128:12428–12429

    Article  CAS  PubMed  Google Scholar 

  2. Huang C-P, Li Y-K, Chen T-M (2007) A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots. Biosens Bioelectron 22:1835–1838

    Article  CAS  PubMed  Google Scholar 

  3. Powe AM, Fletcher KA, St. Luce NN et al (2004) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 76:4614–4634

    Article  CAS  PubMed  Google Scholar 

  4. King DW, Cooper WJ, Rusak SA et al (2007) Flow injection analysis of H2O2 in natural waters using acridinium ester chemiluminescence: method development and optimization using a kinetic model. Anal Chem 79:4169–4176

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Li J, Liu B et al (2005) Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect. J Phys Chem B 109:23304–23311

    Article  CAS  PubMed  Google Scholar 

  6. Frigerio C, Ribeiro DSM, Rodrigues SSM et al (2012) Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta 735:9–22

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Lin L, Li H, Lin J-M (2014) Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev 263:86–100

    Article  CAS  Google Scholar 

  8. Chen H, Xue W, Lu C et al (2013) Plasmonic luminescent core–shell nanocomposites-enhanced chemiluminescence arising from the decomposition of peroxomonosulfite. Spectrochim Acta A Mol Biomol Spectrosc 116:355–360

    Article  CAS  PubMed  Google Scholar 

  9. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  CAS  PubMed  Google Scholar 

  10. Abdel-Mageed HM, El-Laithy HM, Mahran LG et al (2012) Development of novel flexible sugar ester vesicles as carrier systems for the antioxidant enzyme catalase for wound healing applications. Process Biochem 47:1155–1162

    Article  CAS  Google Scholar 

  11. Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    Article  CAS  Google Scholar 

  12. Ogura Y (1955) Catalase activity at high concentration of hydrogen peroxide. Arch Biochem Biophys 57:288–300

    Article  CAS  PubMed  Google Scholar 

  13. George P (1947) Reaction between catalase and hydrogen peroxide. Nature 159:41–43

    Article  CAS  PubMed  Google Scholar 

  14. George P (1949) The effect of the peroxide concentration and other factors on the decomposition of hydrogen peroxide by catalase. Biochem J 44:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bonnichsen RK, Chance B, Theorell H (1947) Catalase activity. Acta Chem Scand 1:685–709

    Article  Google Scholar 

  16. Ozyilmaz G, Tukel SS, Alptekin O (2007) Kinetic properties and storage stability of catalase immobilized on to florisil

  17. Vetrano AM, Heck DE, Mariano TM et al (2005) Characterization of the oxidase activity in mammalian catalase. J Biol Chem 280:35372–35381

    Article  CAS  PubMed  Google Scholar 

  18. Mozaffar S, Ueda M, Kitatsuji K et al (1986) Properties of catalase purified from a methanol-grown yeast, Kloeckera sp. 2201. FEBS J 155:527–531

    CAS  Google Scholar 

  19. Alptekin Ö, Tükel SS, Yıldırım D, Alagöz D (2010) Immobilization of catalase onto Eupergit C and its characterization. J Mol Catal B Enzym 64:177–183

    Article  CAS  Google Scholar 

  20. Alptekin Ö, Tükel SS, Yildirim D (2008) Immobilization and characterization of bovine liver catalase on eggshell. J Serb Chem Soc 73:609–618

    Article  CAS  Google Scholar 

  21. Çetinus ŞA, Öztop HN (2000) Immobilization of catalase on chitosan film. Enzym Microb Technol 26:497–501

    Article  Google Scholar 

  22. Vasudevan PT, Weiland RH (1990) Deactivation of catalase by hydrogen peroxide. Biotechnol Bioeng 36:783–789

    Article  CAS  PubMed  Google Scholar 

  23. Chance B, Greenstein DS, Roughton FJW (1952) The mechanism of catalase action. I. Steady-state analysis. Arch Biochem Biophys 37:301–321

    Article  CAS  PubMed  Google Scholar 

  24. Haber J, Maśalakiewicz P, Rodakiewicz-nowak J, Walde P (1993) Activity and spectroscopic properties of bovine liver catalase in sodium bis (2-ethylhexyl) sulfosuccinate/isooctane reverse micelles. FEBS J 217:567–573

    CAS  Google Scholar 

  25. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  26. Gharaat M, Sajedi RH, Shanehsaz M et al (2017) A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of vibrio cholera O1 (Ogawa) and clostridium botulinum toxin a. Microchim Acta 184:4817–4825

    Article  CAS  Google Scholar 

  27. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  28. Zhao Y, Zhao S, Huang J, Ye F (2011) Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta 85:2650–2654

    Article  CAS  PubMed  Google Scholar 

  29. Periasamy AP, Umasankar Y, Chen S-M (2009) Nanomaterials-acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review. Sensors 9:4034–4055

    Article  CAS  PubMed  Google Scholar 

  30. Rongen HAH, Hoetelmans RMW, Bult A, Van Bennekom WP (1994) Chemiluminescence and immunoassays. J Pharm Biomed Anal 12:433–462

  31. Liang A, Liang Y, Jiang Z, Jiang H (2009) Resonance scattering spectral detection of catalase activity using au@ ag nanoparticle as probe and coupling catalase catalytic reaction with Fenton reaction. J Fluoresc 19:1009

    Article  CAS  PubMed  Google Scholar 

  32. Wu M, Lin Z, Wolfbeis OS (2003) Determination of the activity of catalase using a europium (III)–tetracycline-derived fluorescent substrate. Anal Biochem 320:129–135

    Article  CAS  PubMed  Google Scholar 

  33. Deng H-H, Wu G-W, He D et al (2015) Fenton reaction-mediated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection. Analyst 140:7650–7656

    Article  CAS  PubMed  Google Scholar 

  34. Escobar L, Salvador C, Contreras M, Escamilla JE (1990) On the application of the Clark oxygen electrode to the study of enzyme kinetics in apolar solvents: the catalase reaction. Anal Biochem 184:139–144

    Article  CAS  PubMed  Google Scholar 

  35. Fiedurek J, Gromada A (2000) Production of catalase and glucose oxidase by aspergillus Niger using unconventional oxygenation osf culture. J Appl Microbiol 89:85–89

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the research council of Tarbiat Modares University and Ministry of Sciences, Researches, and Technology for financial support during the course of this project. We also thank Hossein Rahmani for his guidance with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza H. Sajedi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavamipour, F., Sajedi, R.H. & Khajeh, K. A chemiluminescence-based catalase assay using H2O2-sensitive CdTe quantum dots. Microchim Acta 185, 376 (2018). https://doi.org/10.1007/s00604-018-2912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2912-5

Keywords

Navigation