Skip to main content
Log in

Highly sensitive fluorometric determination of thrombin by on-chip signal amplification initiated by terminal deoxynucleotidyl transferase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes an on-chip amplification scheme initiated by a terminal deoxynucleotidyl transferase (TdT) for highly sensitive fluorometric determination of protein. Two thrombin-binding aptamers were designed to capture thrombin as they can form a sandwich structure for improved specificity. An amino-modified aptamer (TBA29) was first immobilized on a silicon chip. After capture of thrombin, a second aptamer (TBA15) was conjugated to the second binding site of thrombin. The 3’-terminal of aptamer TBA15 is exposed on the chip surface, and then fluorescein-labeled 12-dATP associates to the 3’-terminal with the help of TdT. This results in signal amplification, and eventually leads to highly sensitive detection. Under optimal conditions, fluorescence intensity is linearly related to the logarithm of thrombin concentration in the range of 100 fM - 0.1 μM, and the detection limit is as low as 2.0 fM. The assay is sensitive and selective even over potentially interfering proteins and in the presence of human serum.

Schematic strategy for thrombin detection. Two thrombin-binding aptamers were designed to capture thrombin to form a sandwich structure for improved specificity. The protein detection is based on TdT initiated on-chip fluorescent amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cao Y, Chen D, Chen W, Yu J, Chen Z, Li G (2014) Aptamer-based homogeneous protein detection using cucurbit [7] uril functionalized electrode. Anal Chim Acta 812:45–49 https://doi.org/10.1016/j.aca.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  2. Cao Y, Wang Z, Cao J, Mao X, Chen G, Zhao J (2017) A general protein aptasensing strategy based on untemplated nucleic acid elongation and the use of fluorescent copper nanoparticles: Application to the detection of thrombin and the vascular endothelial growth factor. Microchim Acta 184:3697–3704 https://doi.org/10.1007/s00604-017-2393-y

    Article  CAS  Google Scholar 

  3. Shi K, Dou B, Yang J, Yuan R, Xiang Y (2017) Target-triggered catalytic hairpin assembly and TdT-catalyzed DNA polymerization for amplified electronic detection of thrombin in human serums. Biosens Bioelectron 87:495–500 https://doi.org/10.1016/j.bios.2016.08.056

    Article  CAS  PubMed  Google Scholar 

  4. Zhang L, Li L (2016) Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic. Microchim Acta 183:485–490 https://doi.org/10.1007/s00604-015-1674-6

    Article  CAS  Google Scholar 

  5. Kumar Mishra S, Kumar A (2016) NALDB: nucleic acid ligand database for small molecules targeting nucleic acid. Database:baw002 https://doi.org/10.1093/database/baw002

  6. Tanaka T, Matsunaga T (2000) Fully automated chemiluminescence immunoassay of insulin using antibody- protein A- bacterial magnetic particle complexes. Anal Chem 72:3518–3522 https://doi.org/10.1021/ac9912505

    Article  CAS  PubMed  Google Scholar 

  7. Wang K, Liao J, Yang X, Zhao M, Chen M, Yao W, Lan X (2015) A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron 63:172–177 https://doi.org/10.1016/j.bios.2014.07.022

    Article  CAS  PubMed  Google Scholar 

  8. Tjong V (2013) On-chip labeling via surface initiated enzymatic polymerization (SIEP) for nucleic acids hybridization detection. Dissertation, Duke University http://hdl.handle.net/10161/7152. Accessed 13 May 2013

  9. Zhang X, Li S, Jin X, Zhang S (2011) A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chem Commun 47:4929–4931 https://doi.org/10.1039/C1CC10830A

    Article  CAS  Google Scholar 

  10. Sui N, Wang L, Xie F, Liu F, Xiao H, Liu M, William WY (2016) Ultrasensitive aptamer-based thrombin assay based on metal enhanced fluorescence resonance energy transfer. Microchim Acta 183:1563–1570. https://doi.org/. https://doi.org/10.1007/s00604-016-1774-y

    Article  CAS  Google Scholar 

  11. Xiang Y, Xie M, Bash R, Chen JJ, Wang J (2007) Ultrasensitive Label-Free Aptamer-Based Electronic Detection. Angew Chem Int Ed 46:9054 https://doi.org/10.1002/anie.200703242

    Article  CAS  Google Scholar 

  12. Barreda-García S, González-Álvarez MJ, de-los Santos-Álvarez N, Palacios-Gutiérrez JJ, Miranda-Ordieres AJ, Lobo-Castañón MJ (2015) Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosens Bioelectron 68:122–128 https://doi.org/10.1016/j.bios.2014.12.029

    Article  CAS  PubMed  Google Scholar 

  13. Miao M, Tian J, Luo Y, Du Z, Liang Z, Xu W (2018) Terminal deoxynucleotidyl transferase-induced DNAzyme nanowire sensor for colorimetric detection of lipopolysaccharides. Sensors Actuators B Chem 256:790–796 https://doi.org/10.1016/j.snb.2017.10.004

    Article  CAS  Google Scholar 

  14. Xie S, Chai Y, Yuan Y, Bai L, Yuan R (2014) A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires. Anal Chim Acta 832:51–57 https://doi.org/10.1016/j.aca.2014.04.065

    Article  CAS  PubMed  Google Scholar 

  15. Tang Z, Zhang H, Ma C, Gu P, Zhang G, Wu K, Wang K (2018) Colorimetric determination of the activity of alkaline phosphatase based on the use of Cu (II)-modulated G-quadruplex-based DNAzymes. Mikrochim Acta 185(109) https://doi.org/10.1007/s00604-017-2628-y

  16. Meirinho SG, Dias LG, Peres AM, Rodrigues LR (2017) Rodrigues, Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal Chim Acta 987:25–37 https://doi.org/10.1016/j.aca.2017.07.071

    Article  CAS  PubMed  Google Scholar 

  17. Chow DC, Chilkoti A (2007) Surface-initiated enzymatic polymerization of DNA. Langmuir 23:11712–11717 https://doi.org/10.1021/la701630g

    Article  CAS  PubMed  Google Scholar 

  18. Jung J, Hyun J (2011) Visualization of enzymatic DNA extension by surface plasmon resonance imaging. Biochip J 5:304–308 https://doi.org/10.1007/s13206-011-5403-x

    Article  CAS  Google Scholar 

  19. Motea EA, Berdis AJ (2010) Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim Biophys Acta 1804:1151–1166 https://doi.org/10.1016/j.bbapap.2009.06.030

    Article  CAS  PubMed  Google Scholar 

  20. Kool E T (2006) Use of Multiple Fluorescent Labels in Biological Sensing, Stanford Univ Ca Dept Of Chemistry.

  21. Zhao H, Liu Q, Liu M, Jin Y, Li B (2017) Label-free fluorescent assay of T4 polynucleotide kinase phosphatase activity based on G-quadruplexe− thioflavin T complex. Talanta 165:653–658 https://doi.org/10.1016/j.talanta.2017.01.027

    Article  CAS  PubMed  Google Scholar 

  22. Cho Y, Kool ET (2006) Enzymatic synthesis of fluorescent oligomers assembled on a DNA backbone. Chembiochem 7:669–672 https://doi.org/10.1002/cbic.200500515

    Article  CAS  PubMed  Google Scholar 

  23. Tjong V, Yu H, Hucknall A, Chilkoti A (2012) Direct fluorescence detection of RNA on microarrays by surface-initiated enzymatic polymerization. Anal Chem 85:426–433 https://doi.org/10.1021/ac303132j

    Article  CAS  PubMed  Google Scholar 

  24. Wan Y, Xu H, Su Y, Zhu X, Song S, Fan C (2013) A surface-initiated enzymatic polymerization strategy for electrochemical DNA sensors. Biosens Bioelectron 41:526–531 https://doi.org/10.1016/j.bios.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  25. Lenigk R, Carles M, Ip NY, Sucher NJ (2001) Surface characterization of a silicon-chip-based DNA microarray. Langmuir 17:2497–2501 https://doi.org/10.1021/la001355z

    Article  CAS  Google Scholar 

  26. Hu W, Hu Q, Li L, Kong J, Zhang X (2015) Detection of sequence-specific DNA with a morpholino-functionalized silicon chip. Anal Methods 7:2406–2412 https://doi.org/10.1039/C4AY02780A

    Article  CAS  Google Scholar 

  27. Tasset DM, Kubik MF, Steiner W (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 272:688–698 https://doi.org/10.1006/jmbi.1997.1275

    Article  CAS  PubMed  Google Scholar 

  28. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566 https://doi.org/10.1038/355564a0

    Article  CAS  PubMed  Google Scholar 

  29. Lao YH, Peck K, Chen LC (2009) Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Anal Chem 81:1747–1754 https://doi.org/10.1021/ac801285a

    Article  CAS  PubMed  Google Scholar 

  30. Kim Y, Cao Z, Tan W (2008) Molecular assembly for high-performance bivalent nucleic acid inhibitor. Proc Natl Acad Sci U S A 105:5664–5669 https://doi.org/10.1073/pnas.0711803105

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang XF, Zhang J, Liu L (2014) Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra. J Fluoresc 24:819–826 https://doi.org/10.1007/s10895-014-1356-5

    Article  CAS  PubMed  Google Scholar 

  32. Sjöback R, Nygren J, Kubista M (1995) Absorption and fluorescence properties of fluorescein. Spectrochim Acta A Mol Biomol Spectrosc 51:7–21 https://doi.org/10.1016/0584-8539(95)01421-P

    Article  Google Scholar 

  33. Bai S, Wang T, Zhang Z, Sheng S, Yu W, Xie G (2017) A novel colorimetric biosensor for detecting target DNA and human alpha thrombin based on associative toehold activation concatemer induced catalyzed hairpin assembly amplification. Sensors Actuators B Chem 239:447–454 https://doi.org/10.1016/j.snb.2016.08.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 21575066) and Henan University of Chinese Medicine of graduate student innovation training base project (grant No 2017YCX037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinming Kong, Huaixia Yang or Qingyun Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, D., He, M., Ma, K. et al. Highly sensitive fluorometric determination of thrombin by on-chip signal amplification initiated by terminal deoxynucleotidyl transferase. Microchim Acta 185, 380 (2018). https://doi.org/10.1007/s00604-018-2903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2903-6

Keywords

Navigation