Skip to main content
Log in

Simultaneous voltammetric determination of acetaminophen and dopamine using a glassy carbon electrode modified with copper porphyrin-exfoliated graphene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Graphene nanosheets (GSs) were prepared via liquid-phase non-covalent exfoliation of graphite powder in N,N-dimethylformamide under the assistance of copper(II) meso-tetra(4-carboxyphenyl)porphyrin tetrasodium salt Na4(CuTCPP). A glassy carbon electrode (GCE) was modified with a film of such GSs which, due to the good electrical conductivity of graphene and the electrocatalytic properties of Na4(CuTCPP), is capable of simultaneous determination of acetaminophen (AC) and dopamine (DA). The peak currents, best measured at voltage of 0.2 V (for DA) and 0.4 V (for AC; both vs. SCE), increase linearly in the 0.0024–3.6 μM and 0.004–7.6 μM concentration ranges, respectively. The detection limits are 0.8 nM for DA and 0.7 nM for AC. The sensor was successfully applied to the simultaneous determination of AC and DA in pharmaceutical preparations and spiked human serum. The results were in good agreement with those obtained for the same samples by HPLC.

Graphene nanosheets were prepared via a facile liquid-phase exfoliation of graphite with the assistance of copper(II) meso-tetra(4-carboxyphenyl)porphyrin tetrasodium salt. A graphene nanosheet-film modified glassy carbon electrode was fabricated to determine acetaminophen and dopamine through a simple and effective strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A–793A

    Article  CAS  PubMed  Google Scholar 

  2. Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainova I (2017) Ultra-sensitive voltammetric simultaneous determination of dopamine, uric acid and ascorbic acid based on a graphene-coated alumina electrode. Microchim Acta 184:4603–4610

    Article  CAS  Google Scholar 

  3. Slagter HA, van Wouwe NC, Kanoff K, Grasman RPPP, Claassen DO, van den Wildenberg WPM, Wylie SA (2016) Dopamine and temporal attention: an attentional blink study in Parkinson's disease patients on and off medication. Neuropsychologia 91:407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kostrzewa RM, Nowak P, Brus R, Brown RW (2016) Perinatal treatments with the dopamine D2-receptor agonist quinpirole produces permanent D2-receptor supersensitization: a model of schizophrenia. Neurochem Res 41:183–192

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Wu T, Bi CY (2016) Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly(alizarin violet 3B), multiwalled carbon nanotubes and graphene. Microchim Acta 183:731–739

    Article  CAS  Google Scholar 

  6. Siepsiak M, Szałek E, Karbownik A, Grabowski T, Mziray M, Adrych K, Grześkowiak E (2016) Pharmacokinetics of paracetamol in patients with chronic pancreatitis. Pharmacol Rep 68:733–736

    Article  CAS  PubMed  Google Scholar 

  7. Parrot S, Neuzeret PC, Denoroy L (2011) A rapid and sensitive method for the analysis of brain monoamine neurotransmitters using ultra-fast liquid chromatography coupled to electrochemical detection. J Chromatogr B Anal Technol Biomed Life Sci 879:3871–3878

    Article  CAS  Google Scholar 

  8. Moghadam MR, Dadfarnia S, Shabani AMH, Shahbazikhah P (2011) Chemometric-assisted kinetic–spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Anal Biochem 410:289–295

    Article  CAS  PubMed  Google Scholar 

  9. Devi JSA, Anulekshmi AH, Salini S, Aparna RS, George S (2017) Boronic acid functionalized nitrogen doped carbon dots for fluorescent turn-on detection of dopamine. Microchim Acta 184:4081–4090

    Article  CAS  Google Scholar 

  10. Zhao J, Zhao L, Lan C, Zhao S (2016) Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensors Actuators B Chem 223:246–251

    Article  CAS  Google Scholar 

  11. Teng Y, Liu F, Kan XW (2017) Voltammetric dopamine sensor based on three-dimensional electrosynthesized molecularly imprinted polymers and polypyrrole nanowires. Microchim Acta 184:2515–2522

    Article  CAS  Google Scholar 

  12. Jin H, Zhao CQ, Gui RJ, Gao XH, Wang ZH (2018) Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrodeused as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal Chim Acta 1025:154–162

    Article  CAS  PubMed  Google Scholar 

  13. Sousa CP, Salvador MA, Homem-de-Mello P, Ribeiro FWP, de Lima-Netoa P, Correia AN (2017) Computational modeling of functionalized multi-walled carbon nanotubes dispersed in polyethylenimine for electrochemical sensing of acetaminophen. Sensors Actuators B Chem 246:969–978

    Article  CAS  Google Scholar 

  14. Anuar NS, Basirun WJ, Ladan M, Shalauddin M, Mehmood MS (2018) Fabrication of platinum nitrogen-doped graphene nanocomposite modified electrode for the electrochemical detection of acetaminophen. Sensors Actuators B Chem 266:375–383

    Article  CAS  Google Scholar 

  15. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  PubMed  Google Scholar 

  16. Martiradonna L (2013) Multifunctional graphene. Nat Mater 12:688

    Article  CAS  Google Scholar 

  17. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  PubMed  Google Scholar 

  18. Liu JC, Xie YZ, Wang K, Zeng QT, Liu R, Liu XY (2017) A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer for voltammetric determination of dopamine, paracetamol and uric acid. Microchim Acta 184:1739–1745

    Article  CAS  Google Scholar 

  19. Zhang Y, Zeng GM, Tang L, Chen J, Zhu Y, He XX, He Y (2015) Electrochemical sensor based on electrodeposited graphene-au modified electrode and nano au carrier amplified signal strategy for attomolar mercury detection. Anal Chem 87:989–996

    Article  CAS  PubMed  Google Scholar 

  20. Hudari FF, Zanoni MVB (2017) A glassy carbon electrode modified with reduced graphene oxide for sensitive determination of bumetanide in urine at levels required for doping analysis. Microchim Acta 184:4117–4124

    Article  CAS  Google Scholar 

  21. Su D, Zhang Y, Wang Z, Wan Q, Yang N (2017) Decoration of graphene nano platelets with gold nanoparticles for voltammetry of 4-nonylphenol. Carbon 117:313–321

    Article  CAS  Google Scholar 

  22. Keeley GP, McEvoy N, Nolan H, Holzinger M, Cosnier S, Duesberg GS (2014) Electroanalytical sensing properties of pristine and functionalized multilayer graphene. Chem Mater 26:1807–1812

    Article  CAS  Google Scholar 

  23. Lim CX, Hoh HY, Ang PK, Loh KP (2010) Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal Chem 82:7387–7393

    Article  CAS  PubMed  Google Scholar 

  24. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  25. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Deusberg G, Krishnamurthy S, Goodhue R, Hutchinson J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  CAS  PubMed  Google Scholar 

  26. Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398

    Article  CAS  PubMed  Google Scholar 

  27. Wu C, Tang Y, Wan CD, Liu HY, Wu KB (2015) Enhanced-oxidation and highly-sensitive detection of acetaminophen, guanine and adenine using NMP-exfoliated graphene nanosheets-modified electrode. Electrochim Acta 166:285–292

    Article  CAS  Google Scholar 

  28. Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871

    Article  CAS  PubMed  Google Scholar 

  29. Song XJ, Shi Z, Tan XH, Zhang SH, Liu GS, Wu KB (2014) One-step solvent exfoliation of graphite to produce a highly-sensitive electrochemical sensor for tartrazine. Sensors Actuators B Chem 197:104–108

    Article  CAS  Google Scholar 

  30. Du WC, Lu J, Sun PP, Zhu YY, Jiang XQ (2013) Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene. Chem Phys Lett 568–569:198–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos.: 21561011 and 21675175), the Major Projects of Technical Innovation of Hubei Province, China (No. 2017ACA172), The Natural Science Foundation of Hubei Province (No. 2018CFB617 and 2015CFA092), and the Open Foundation of Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission (KLACOF201703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Wang or Zhihong Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Fu, J., Wang, J. et al. Simultaneous voltammetric determination of acetaminophen and dopamine using a glassy carbon electrode modified with copper porphyrin-exfoliated graphene. Microchim Acta 185, 369 (2018). https://doi.org/10.1007/s00604-018-2891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2891-6

Keywords

Navigation