Microchimica Acta

, 185:310 | Cite as

Dye sensitized photoelectrochemical immunosensor for the tumor marker CEA by using a flower-like 3D architecture prepared from graphene oxide and MoS2

  • Kaijing Song
  • Chuanmin Ding
  • Bing ZhangEmail author
  • Honghong Chang
  • Zhihuan Zhao
  • Wenlong Wei
  • Junwen WangEmail author
Original Paper


The authors describe a dye-sensitized photoelectrochemical immunoassay for the tumor marker carcinoembryonic antigen (CEA). The method employs the rhodamine dye Rh123 with red color and absorption maximum at 500 nm for spectral sensitization, and a 3D nanocomposite prepared from graphene oxide and MoS2 acting as the photoelectric conversion layer. The nanocomposite with flower-like 3D architectures was characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. A photoelectrochemical sandwich immunoassay was developed that is based on the use of the nanocomposite and based on the specific binding of antibody and antigen, and by using a secondary antibody labeled with Rh123 and CdS (Ab2-Rh123@CdS). Under optimal conditions and at a typical working voltage of 0 V (vs. Hg/HgCl2), the photocurrent increases linearly 10 pg mL−1 to 80 ng mL−1 CEA concentration range, with a 3.2 pg mL−1 detection limit.

Graphical abstract

Flower-like GO-MoS2 complex with high efficiency of electron transport was synthesized to construct photoelectrochemical platform. The sandwich-type immunoassay was built on this platform based on specific binding of antigen and antibody. Carcinoembryonic antigen in sample was detected sensitively by using sensitization of rhodamine dye Rh123 as signal amplification strategy.


Immunoassay Sandwich-type Signal amplification Sensitization Two-dimension nanomaterials 



This work was supported by the National Natural Science Foundation of China (Grant No. 21605111 and 21706178), and Natural Science Foundation of Shanxi Province (No. 201601D021037 and 201601D011079).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2853_MOESM1_ESM.doc (2.7 mb)
ESM 1 (DOC 2748 kb)


  1. 1.
    Meng M, Wu X, Zhu X, Zhu X, Chu P (2014) Facet cutting and hydrogenation of In2O3 nanowires for enhanced photoelectrochemical water splitting. ACS Appl Mater Interfaces 6:4081–4088CrossRefPubMedGoogle Scholar
  2. 2.
    Tan C, Ong W, Ho G (2015) Self-biased hybrid piezoelectric-photoelectrochemical cell with photocatalytic functionalities. ACS Nano 9:7661–7670CrossRefPubMedGoogle Scholar
  3. 3.
    Li Q, Zhang N, Yang Y, Wang G, Ng D (2014) High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures. Langmuir 30:8965–8972CrossRefPubMedGoogle Scholar
  4. 4.
    Riedel M, Hölzel S, Hille P, Schörmann J, Eickhoff M, Lisdat F (2017) InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH. Biosens Bioelectron 94:298–304CrossRefPubMedGoogle Scholar
  5. 5.
    Wu S, Huang H, Shang M, Du C, Wu Y, Song W (2017) High visible light sensitive MoS2 ultrathin nanosheets for photoelectrochemical biosensing. Biosens Bioelectron 92:646–653CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang G, Zhuang Y, Shan D, Su G, Cosnier S, Zhang X (2016) Zirconium-based porphyrinic metal–organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprote in detection. Anal Chem 88:11207–11212CrossRefPubMedGoogle Scholar
  7. 7.
    Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 184:389–414CrossRefGoogle Scholar
  8. 8.
    Han Z, Luo M, Chen L, Pan H, Chen J, Li C (2017) A photoelectrochemical biosensor for determination of DNA based on flower rod-like zinc oxide heterostructures. Microchim Acta 184:2541–2549CrossRefGoogle Scholar
  9. 9.
    Wang Y, Bian F, Qin X, Wang Q (2018) Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO2 nanorod array sensitized with Eu(III)-doped CdS quantum dots. Microchim Acta 185:161CrossRefGoogle Scholar
  10. 10.
    Zhang X, Zhang R, Yang A, Wang Q, Kong R, Qu F (2017) Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@au nanocomposite. Microchim Acta 184:4367–4374CrossRefGoogle Scholar
  11. 11.
    Li H, Zhu M, Chen W, Wang K (2017) Ternary heterojunctions composed of BiOCl, BiVO4 and nitrogen-doped carbon quantum dots for use in photoelectrochemical sensing: effective charge separation and application to ultrasensitive sensing of dopamine. Microchim Acta 184:4827–4833CrossRefGoogle Scholar
  12. 12.
    Shen Y, Saeki A, Seki S, Lee J, Aimi J, Nakanishi T (2015) Exfoliation of graphene and assembly formation with alkylated-C60: a Nanocarbon hybrid towards photo-energy conversion electrode devices. Adv Optical Mater 3:925–930CrossRefGoogle Scholar
  13. 13.
    Shen Y, Reparaz JS, Wagner MR, Hoffmann A, Thomsen C, Lee J, Heeg S, Hatting B, Reich S, Saeki A, Seki S, Yoshida K, Babu SS, Mohwald H, Nakanishi T (2011) Assembly of carbon nanotubes and alkylated fullerenes: nanocarbon hybrid towards photovoltaic applications. Chem Sci 2:2243–2250CrossRefGoogle Scholar
  14. 14.
    Lv Y, Chen S, Shen Y, Ji J, Zhou Q, Liu S, Zhang Y (2018) Competitive Multiple-Mechanism-Driven Electrochemiluminescent Detection of 8-Hydroxy-2′-deoxyguanosine. J Am Chem Soc 14:2801–2804Google Scholar
  15. 15.
    Zhou Z, Zhang Y, Shen Y, Liu S, Zhang Y (2018) Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem Soc Rev 47:2298–2321CrossRefPubMedGoogle Scholar
  16. 16.
    Gopalakrishnan D, Damien D, Shaijumon M (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297–5303CrossRefPubMedGoogle Scholar
  17. 17.
    Um D, Lee Y, Lim S, Park S, Lee H, Ko H (2016) High-performance MoS2/CuO nanosheet-on-one-dimensional heterojunction photodetectors. ACS Appl Mater Interfaces 8:33955–33962CrossRefPubMedGoogle Scholar
  18. 18.
    Yang T, Cui Y, Chen M, Yu R, Luo S, Li W, Jiao K (2017) Uniform and vertically oriented ZnO nanosheets based on thin-layered MoS2: synthesis and high-sensing ability. ACS Sustain Chem Eng 5:1332–1338CrossRefGoogle Scholar
  19. 19.
    Zhang X, Yang Y, Ding S, Que W, Zheng Z, Du Y (2017) Construction of high-quality SnO2@MoS2 nanohybrids for promising photoelectrocatalytic applications. Inorg Chem 56:3386–3393CrossRefPubMedGoogle Scholar
  20. 20.
    Wang L, Zhang X, Ma Y, Yang M, Qi Y (2017) Supercapacitor performances of the MoS2/CoS2 nanotube arrays in situ grown on Ti plate. J Phys Chem C 121:9089–9095CrossRefGoogle Scholar
  21. 21.
    Vinoth R, Patil I, Pandikumar A, Kakade B, Huang N, Dionysios D, Neppolian B (2016) Synergistically enhanced electrocatalytic performance of an N-doped graphene quantum dot-decorated 3D MoS2–graphene nanohybrid for oxygen reduction reaction. ACS Omega 1:971–980CrossRefGoogle Scholar
  22. 22.
    Liu X, Xie X, Wei Y, Mao C, Chen J, Niu H, Song J, Jin B (2018) Photoelectrochemical immunoassay for human interleukin 6 based on the use of perovskite-type LaFeO3 nanoparticles on fluorine-doped tin oxide glass. Microchim Acta 185:52CrossRefGoogle Scholar
  23. 23.
    Akanda M, Ju H (2016) A Tyrosinase-responsive nonenzymatic redox cycling for amplified electrochemical immunosensing of protein. Anal Chem 88:9856–9861CrossRefPubMedGoogle Scholar
  24. 24.
    Liu T, Hu R, Zhang X, Zhang K, Liu Y, Zhang X, Bai R, Li D, Yang Y (2016) Metal–organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal Chem 88:12516–12523CrossRefPubMedGoogle Scholar
  25. 25.
    Farka Z, Juřík T, Pastucha M, Skládal P (2016) Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of salmonella in powdered milk. Anal Chem 88:11830–11836CrossRefPubMedGoogle Scholar
  26. 26.
    Guo J, Wang J, Zhao J, Guo Z, Zhang Y (2016) Ultrasensitive multiplexed immunoassay for tumor biomarkers based on DNA hybridization chain reaction amplifying signal. ACS Appl Mater Interfaces 8:6898–6904CrossRefPubMedGoogle Scholar
  27. 27.
    Wang P, Wang J, Ming T, Wang X, Yu H, Yu J, Wang Y, Lei M (2013) Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance. ACS Appl Mater Interfaces 5:2924–2929CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao M, Fan G, Chen J, Shi J, Zhu J (2015) Highly sensitive and selective photoelectrochemical biosensor for Hg2+ detection based on dual signal amplification by exciton energy transfer coupled with sensitization effect. Anal Chem 87:12340–12347CrossRefPubMedGoogle Scholar
  29. 29.
    Yu S, Lee Y, Jang S, Kang J, Jeon J, Lee C, Lee J, Kim H, Hwang E, Lee S, Cho J (2014) Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano 8:8285–8291CrossRefPubMedGoogle Scholar
  30. 30.
    Yan Z, Wang Z, Miao Z, Liu Y (2016) Dye-sensitized and localized surface plasmon resonance enhanced visible-light photoelectrochemical biosensors for highly sensitive analysis of protein kinase activity. Anal Chem 88:922–929CrossRefPubMedGoogle Scholar
  31. 31.
    Huang T, Kung C, Liao Y, Kao S, Cheng M, Chang T, Henzie J, Alamri H, Alothman Z, Yamauchi Y, Ho K, Wu K (2017) Enhanced charge collection in MOF-525-PEDOT nanotube composites enable highly sensitive biosensing. Adv Sci 4:1700261CrossRefGoogle Scholar
  32. 32.
    Chen Y, Chu W, Liu W, Guo X, Jin Y, Li B (2018) Paper-based chemiluminescence immunodevice for the carcinoembryonic antigen by employing multi-enzyme carbon nanosphere signal enhancement. Microchim Acta 185:187CrossRefGoogle Scholar
  33. 33.
    Yang W, Zhou X, Zhao J, Xu W (2018) A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Microchim Acta 185:100CrossRefGoogle Scholar
  34. 34.
    Jiang W, Liu L, Zhang L, Guo Q, Cui Y, Yang M (2017) Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacid and rolling circle amplification. Microchim Acta 184:4757–4763CrossRefGoogle Scholar
  35. 35.
    Liu Q, Liu X, Wei Y, Mao C, Niu H, Song J, Jin B, Zhang S (2017) Electrochemiluminescence immunoassay for the carcinoembryonic antigen using CdSe: Eu nanocrystals. Microchim Acta 184:1353–1360CrossRefGoogle Scholar
  36. 36.
    Li S, Wan Y, Su Y, Fan C, Bhethanabotla V (2017) Gold nanoparticle-based low limit of detection love wave biosensor for carcinoembryonic antigens. Biosens Bioelectron 95:48–54CrossRefPubMedGoogle Scholar
  37. 37.
    Li J, Cao Y, Hinman S, McKeating K, Guan Y, Hu X, Cheng Q, Yang Z (2018) Efficient label-free chemiluminescent immunosensor based on dual functional cupric oxide nanorods as peroxidase mimics. Biosens Bioelectron 100:304–311CrossRefPubMedGoogle Scholar
  38. 38.
    Yang Z, Lan Q, Li J, Wu J, Tang Y, Hu X (2017) Efficient streptavidin-functionalized nitrogen-doped graphene for the development of highly sensitive electrochemical immunosensor. Biosens Bioelectron 89:312–318CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Kaijing Song
    • 1
  • Chuanmin Ding
    • 1
  • Bing Zhang
    • 1
    Email author
  • Honghong Chang
    • 1
  • Zhihuan Zhao
    • 1
  • Wenlong Wei
    • 1
  • Junwen Wang
    • 1
    Email author
  1. 1.College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations