Skip to main content
Log in

Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a surface-enhanced Raman scattering (SERS) based aptasensor for Salmonella typhimurium (S. typhimurium). Gold nanoparticles (AuNPs; 35 nm i.d.) were functionalized with the aptamer (ssDNA 1) and used as the capture probe, while smaller (15 nm) AuNPs were modified with a Cy3-labeled complementary sequence (ssDNA 2) and used as the signalling probe. The asymmetric gold nanodimers (AuNDs) were assemblied with the Raman signal probe and the capture probe via hybridization of the complementary ssDNAs. The gap between two nanoparticles is a “hot spot” in which the Raman reporter Cy3 is localized. It experiences a strong enhancement of the electromagnetic field around the particle. After addition of S. typhimurium, it will be bound by the aptamer which therefore is partially dehybridized from its complementary sequence. Hence, Raman intensity drops. Under the optimal experimental conditions, the SERS signal at 1203 cm−1 increases linearly with the logarithm of the number of colonies in the 102 to 107 cfu·mL−1 concentration range, and the limit of detection is 35 cfu·mL−1. The method can be performed within 1 h and was successfully applied to the analysis of spiked milk samples and performed very well and with high specificity.

DNA-assembled asymmetric gold nanodimers (AuNDs) were synthesized and appllied in a SERS-based aptasensor for S. typhimurium. Capture probe was preferentially combined with S. typhimurium and the structure of the AuNDs was destroyed. The “hot spot” vanished partly, this resulting in the decreased Raman intensity of Cy3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He X, Hu C, Guo Q, Wang K, Li Y, Shangguan J (2013) Rapid and ultrasensitive salmonella typhimurium quantification using positive dielectrophoresis driven on-line enrichment and fluorescent nanoparticleslabel. Biosens Bioelectron 42:460–466

    Article  CAS  PubMed  Google Scholar 

  2. Ranjbar R, Ahmadi M, Memariani M (2016) Multiple-locus variable-number tandem repeat analysis (mlva) for genotyping of salmonella enterica subspecies enterica serotype infantis isolated from human sources. Microb Pathog 100:299–304

    Article  CAS  PubMed  Google Scholar 

  3. Brandt R, Petersen A, Brix S, Licht TR, Frøkiær H (2013) Epithelial entry rather than the ensuing systemic immune response determines the pathogenicity of two salmonella enterica serovar typhimurium strains in a mouse model. Microbes Infec 15:911–919

    Article  CAS  Google Scholar 

  4. Yang B, Qu D, Zhang XL, Shen JL, Cui SH, Shi Y, Xi M, Sheng M, Zhi S, Meng J (2010) Prevalence and characterization of salmonella serovars in retail meats of marketplace in Shaanxi, China. Int J Food Microbiol 141:63–72

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Liu L, Song S, Tang L, Kuang H, Xu C (2015) A highly sensitive elisa and immunochromatographic strip for the detection of salmonella typhimurium in milk samples. Sensors 15:5281–5292

    Article  CAS  PubMed  Google Scholar 

  6. He X, Xu X, Li K, Liu B, Yue T (2016) Identification of salmonella enterica, typhimurium and variants using a novel multiplex pcr assay. Food Control 65:152–159

    Article  CAS  Google Scholar 

  7. Zheng Q, Yang Y, Xu W, Yuk HG (2014) Real-time pcr method combined with immunomagnetic separation for detecting healthy and heat-injured salmonella typhimurium on raw duck wings. Int J Food Microbiol 186:6–13

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Wang R, Wang H, Slavik M, Wei H, Li Y (2017) An aptamer-based pcr method coupled with magnetic immunoseparation for sensitive detection of salmonella typhimurium in ground Turkey. Anal Biochem 533:34–40

    Article  CAS  PubMed  Google Scholar 

  9. Kumar PP, Agarwal RK, Thomas P, Sailo B, Prasannavadhana A, AshokKumar et al (2014) Rapid detection of salmonella enterica subspecies enterica serovar typhimurium by loop mediated isothermal amplification (lamp) test from field chicken meat samples. Food Biotechnol 28:50–62

  10. Wang S, Liu J, Yong W, Chen Q, Zhang L, Dong Y et al (2015) A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in honey. Talanta131:562–569

  11. Famulok M, Mayer G (2014) Aptamers and selex in chemistry & biology. Chem Biol 21:1055–1058

    Article  CAS  PubMed  Google Scholar 

  12. Park HC, Baig IA, Lee SC, Moon JY, Yoon MY (2014) Development of ssdna aptamers for the sensitive detection of salmonella typhimurium and salmonella enteritidis. Appl Biochem Biotechnol 174:793–802

    Article  CAS  PubMed  Google Scholar 

  13. Meirinho SG, Dias LG, Peres AM, Rodrigues LR (2017) Electrochemical aptasensor for human osteopontin detection using a dna aptamer selected by selex. Anal Chim Acta 987:25–37

    Article  CAS  PubMed  Google Scholar 

  14. Meng F, Ma X, Duan N, Wu S, Yu X, Wang Z et al (2017) Ultrasensitive Sers aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly. Talanta 165:412–418

    Article  CAS  PubMed  Google Scholar 

  15. Qu LL, Liu YY, He SH, Chen JQ, Liang Y, Li HT (2016) Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells. Biosens Bioelectron 77:292–298

    Article  CAS  PubMed  Google Scholar 

  16. Muller C, Glamuzina B, Pozniak I, Weber K, Cialla D, Popp J et al (2014) Amnesic shellfish poisoning biotoxin detection in seawater using pure or amino-functionalized ag nanoparticles and Sers. Talanta 130:108–115

    Article  CAS  PubMed  Google Scholar 

  17. Long NV (2015) Engineering of Sers substrates based on noble metal nanomaterials for chemical and biomedical applications. Appl Spectrosc Rev 50:499–525

    Article  CAS  Google Scholar 

  18. Ma W, Sun M, Xu L, Wang L, Kuang H, Xu C (2013) A Sers active gold nanostar dimer for mercury ion detection. Chem Commun 49:4989–4991

    Article  CAS  Google Scholar 

  19. Zhu Z, Li Q, Bai B, Fan S (2014) Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering. Nanoscale Res Lett 9:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee JH, Nam JM, Jeon KS, Lim DK, Kim H, Kwon S, Lee H, Suh YD (2012) Tuning and maximizing the single-molecule surface-enhanced Raman scattering from dna-tethered nanodumbbells. ACS Nano 6:9574–9584

    Article  CAS  PubMed  Google Scholar 

  21. Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130:12616–12617

    Article  CAS  PubMed  Google Scholar 

  22. Fu C, Wang Y, Chen G, Yang L, Xu S, Xu W (2015) Aptamer-based surface-enhanced raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection. Anal Chem 87(19):9555–9558

    Article  CAS  PubMed  Google Scholar 

  23. Nie Y, Teng Y, Li P, Liu W, Shi Q, Zhang Y (2017) Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced raman scattering. Spectrochim Acta A Mol Biomol Spectrosc 191:271–276

    Article  CAS  PubMed  Google Scholar 

  24. Duan N, Chang B, Zhang H, Wang Z, Wu S (2016) Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int J Food Microbiol 218:38–43

    Article  CAS  PubMed  Google Scholar 

  25. Duan N, Wu S, Chen X, Huang Y, Xia Y, Ma X, Wang Z (2013) Selection and characterization of aptamers against salmonella typhimurium using whole-bacterium systemic evolution of ligands by exponential enrichment (selex). J Agric Food Chem 61:3229–3234

    Article  CAS  PubMed  Google Scholar 

  26. Burns JA, Butler JC, Moran J, Whitesides GM (1991) Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J Org Chem 22:2648–2650

    Article  Google Scholar 

  27. Su J, Wang D, Nörbel L, Shen J, Zhao Z, Dou Y, Peng T, Shi J, Mathur S, Fan C, Song S (2017) Multicolor gold-silver nano-mushrooms as ready-to-use Sers probes for ultrasensitive and multiplex dna/mirna detection. Anal Chem 89:2531–2538

    Article  CAS  PubMed  Google Scholar 

  28. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67

    Article  CAS  PubMed  Google Scholar 

  29. Nam JM, Oh JW, Lee H, Suh YD (2016) Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Acc Chem Res 49:2746–2755

    Article  CAS  PubMed  Google Scholar 

  30. Moukarzel W, Fitremann J, Marty JD (2011) Seed-less amino-sugar mediated synthesis of gold nanostars. Nanoscale 3:3285–3290

    Article  CAS  PubMed  Google Scholar 

  31. Maye MM, Nykypanchuk D, Cuisinier M, Lelie DVD, Gang O (2009) Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat Mater 8:388–391

    Article  CAS  PubMed  Google Scholar 

  32. Loweth CJ, Caldwell WB, Peng X, Alivisatos AP, Schultz PG (1998) Dna-based assembly of gold nanocrystals. Angew Chem Int Ed 38:1808–1812

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Key Research and Development Program of Jiangsu Province (BE2017623), national first-class discipline program of Food Science and Technology (JUFSTR20180303), the Distinguished Professor Program of Jiangsu Province and Synergetic Innovation Center of Food Safety and quality control of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyuan Ma or Zhouping Wang.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Ma, X., Wang, H. et al. Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Microchim Acta 185, 325 (2018). https://doi.org/10.1007/s00604-018-2852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2852-0

Keywords

Navigation