Skip to main content
Log in

A specific fluorescent nanoprobe for dopamine based on the synergistic action of citrate and gold nanoparticles on Tb(III) luminescence

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanoprobe was developed for the fluorometric determination of the neurotransmitter dopamine (DA). It is based on the synergistic enhancement action of citrate and gold nanoparticles (AuNPs) on the luminescence of Tb(III). AuNPs serve as substrates of surface enhanced fluorescence (SEF). Citrate, in turn, acts as a spacer for the SEF effect, a co-ligand of Tb(III) complex, and a recognizing component for DA. The synergistic action of citrate and AuNPs significantly increases the intrinsic green fluorescence of Tb(III) (best measured at excitation/emission peaks of 300/547 nm). Under the optimum conditions, the fluorescence intensity increases linearly in the 3.0 to 200 nM DA concentration ranging (with an R2 value of 0.9959), and the limit of detection (at S/N = 3) is 0.84 nM. The nanoprobe shows good selectivity for DA among other interfering neurotransmitters, some amino acids and ions. The method was applied to the detection of DA in human serum samples where it gave recoveries ranging from 100.5 to 102.9%.

Schematic of a Tb(III) composite fluorescent nanoprobe for the sensitive determination of dopamine (DA). Citrate and gold nanoparticles (AuNPs) synergistically enhance the fluorescence of Tb(III)-DA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang WW, Yu YS, Tang Y, Li KY, Zhao Z, Li MG, Yin GP, Li HB, Sun SH (2017) Enhancing electrochemical detection of dopamine via dumbbell-like FePt–Fe3O4 nanoparticles. Nano 9:1022–1027. https://doi.org/10.1039/c6nr08507e

    Article  CAS  Google Scholar 

  2. Rangel-Barajas C, Coronel I, Florán B (2015) Dopamine receptors and neurodegeneration. Aging Dis 6:349–368. https://doi.org/10.14336/AD.2015.0330

    Article  PubMed  PubMed Central  Google Scholar 

  3. De Benedetto GE, Fico D, Pennetta A, Malitesta C, Nicolardi G, Lofrumento DD, Nuccio FD, Pesa VL (2014) A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. J Pharmaceut Biomed 98:266–270. https://doi.org/10.1016/j.jpba.2014.05.039

    Article  CAS  Google Scholar 

  4. Kim M, Lee JG, Yang CH, Lee S (2016) Silica stationary phase-based on-line sample enrichment coupled with LC-MS/MS for the quantification of dopamine, serotonin and their metabolites in rat brain microdialysates. Anal Chim Acta 923:55–65. https://doi.org/10.1016/j.aca.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  5. Wang AJ, Feng JJ, Dong WJ, Lu YH, Li ZH, Riekkola ML (2010) Spermine-graft-dextran non-covalent copolymer as coating material in separation of basic proteins and neurotransmitters by capillary electrophoresis. J Chromatogr A 1217:5130–5136. https://doi.org/10.1016/j.chroma.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  6. Caetano FR, Felippe LB, Zarbinb AJG, Bergamini MF, Marcolino-Junior LH (2017) Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sensor Actuat B-Chem 243:43–50. https://doi.org/10.1016/j.snb.2016.11.096.

    Article  CAS  Google Scholar 

  7. Xu Y, Hun X, Liu F, Wen X, Luo X (2015) Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe. Microchim Acta 182:1797–1802. https://doi.org/10.1007/s00604-015-1509-5

    Article  CAS  Google Scholar 

  8. Baig N, Kawde AN (2016) A cost-effective disposable graphene-modified electrode decorated with alternating layers of au NPs for the simultaneous detection of dopamine and uric acid in human urine. RSC Adv 6:80756–80765. https://doi.org/10.1039/c6ra10055d

    Article  CAS  Google Scholar 

  9. Chen ZB, Zhang CM, Zhou TH, Ma H (2015) Gold nanoparticle based colormetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182:1003–1008. https://doi.org/10.1007/s00604-014-1417-0

    Article  CAS  Google Scholar 

  10. Teo PS, Rameshkumar P, Pandikumar A, Jiang ZT, Altarawneh M, Huang NM (2017) Colorimetric and visual dopamine assay based on the use of gold nanorods. Microchim Acta 184:4125–4132. https://doi.org/10.1007/s00604-017-2435-5

    Article  CAS  Google Scholar 

  11. Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F, Eychmuller A (2016) Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles. Small 12:2439–2442. https://doi.org/10.1002/smll.201503874

    Article  CAS  PubMed  Google Scholar 

  12. Wang B, Chen Y, Wu Y, Weng B, Liu Y, Li CM (2016) Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta 183:2491–2500. https://doi.org/10.1007/s00604-016-1885-5

    Article  CAS  Google Scholar 

  13. Qu F, Liu Y, Kong R, You J (2017) A versatile DNA detection scheme based on the quenching of fluorescent silver nanoclusters by MoS2 nanosheets: application to aptamer-based determination of hepatitis B virus and of dopamine. Microchim Acta 184:4417–4424. https://doi.org/10.1007/s00604-017-2486-7

    Article  CAS  Google Scholar 

  14. Qian CG, Zhu S, Feng PJ, Chen YL, Yu JC, Tang X, Liu Y, Shen QD (2015) Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish larvae. ACS Appl Mater Interfaces 7:18581–18589. https://doi.org/10.1021/acsami.5b04987

    Article  CAS  PubMed  Google Scholar 

  15. Yin DG, Wang CC, Juan OY, Zhang XY, Jiao Z, Feng Y, Song KL, Liu B, Cao XZ, Zhang L, Han YL, Wu MH (2014) Synthesis of a novel core-shell nanocomposite Ag@SiO2@Lu2O3:Gd/Yb/Er for large enhancing upconversion luminescence and bioimaging. ACS Appl Mater Interfaces 6:18480–18488 https://doi.org/10.1021/am505633g

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Chen MM, Zhang HQ, Wen W, Zhang XH, Wang SF (2017) A simple and sensitive fluorometric dopamine assay based on silica-coated CdTe quantum dots. Microchim Acta 184:31893196–31893196. https://doi.org/10.1007/s00604-017-2270-8

    Article  CAS  Google Scholar 

  17. Zeng ZH, Cui B, Wang Y, Sun CJ, Zhao X, Cui HX (2015) Dual reaction-based multimodal assay for dopamine with high sensitivity and selectivity using functionalized gold nanoparticles. ACS Appl Mater Interfaces 7:16518–16524. https://doi.org/10.1021/acsami.5B03956

    Article  CAS  PubMed  Google Scholar 

  18. Kumar NK, Babu BC, Buddhudu S (2015) Energy transfer based photoluminescence spectra of (Tb+Sm): PEO+PVP polymer nano-composites with Ag nano-particles. J Lumin 161:456–464. https://doi.org/10.1016/j.jlumin.2015.01.004

    Article  CAS  Google Scholar 

  19. Li HH, Wu X (2015) Silver nanoparticles-enhanced rare earth co-luminescence effect of Tb(III)-Y (III)-dopamine system. Talanta 138:203–208. https://doi.org/10.1016/j.talanta.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  20. Li HH, Shen J, Cui RW, Sun CM, Zhao YY, Wu X, Li N, Tang B (2017) A highly selective and sensitive fluorescent nanosensor for dopamine based on formate bridged Tb(III) complex and silver nanoparticles. Analyst 142:4240–4246. https://doi.org/10.1039/c7an00961e

    Article  CAS  PubMed  Google Scholar 

  21. Lian N, Tang JH, He XH, Li WH, Zhang GH (2016) Sensitive detection of dopamine using micelle-enhanced and terbium-sensitized fluorescence. Anal Chem 71:653–659. https://doi.org/10.1134/S1061934816070145

    Article  CAS  Google Scholar 

  22. Yusoff N, Pandikumar A, Ramaraj R, Lim HN, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114. https://doi.org/10.1007/s00604-015-1609-2

    Article  CAS  Google Scholar 

  23. Zheng HR, Xu LM, Zhang ZL, Dong J, Chen ST, Zhang XL (2010) Fluorescence enhancement of acridine orange in a water solution by au nanoparticles. Sci China Phys Mech 53:1799–1804. https://doi.org/10.1007/s11433-010-4103-1

    Article  CAS  Google Scholar 

  24. Rasheed PA, Lee JS (2017) Recent advances in optical detection of dopamine using nanomaterials. Microchim Acta 184:1239–1266. https://doi.org/10.1007/s00604-017-2183-6

    Article  CAS  Google Scholar 

  25. Feng X, Chen JL, Wang LY, Xie SY, Yang S, Huo SZ, Ng SW (2014) A series of homonuclear lanthanide complexes incorporating isonicotinic based carboxylate tectonic and oxalate coligand: structures, luminescent and magnetic properties. CrystEngComm 16:1334–1343. https://doi.org/10.1039/c3ce41674g

    Article  CAS  Google Scholar 

  26. Ren ZB, Li XY, Guo JX, Wang RB, Wu YN, Zhang MD, Li CX, Han QY, Dong J, Zheng HR (2015) Solution-based metal enhanced fluorescence with gold and gold/silver core-shell nanorods. Opt Commun 357:156–160. https://doi.org/10.1016/j.optcom.2015.08.071

    Article  CAS  Google Scholar 

  27. Chen YC, Munechika KK, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluophores and plasmon resonant single silver nanoparticles. Nano Lett 7:690–696. https://doi.org/10.1021/nl062795z

    Article  CAS  PubMed  Google Scholar 

  28. Ganguly M, Pal J, Mondal C, Pal A, Pal T (2015) Imine (-CH=N-) brings selectivity for silver enhanced fluorescence. Dalton T 44:4370–4379. https://doi.org/10.1039/c4dt04022h

    Article  CAS  Google Scholar 

  29. Pande S, Jana S, Sinha AK, Sarkar S, Basu M, Pradhan M, Pal A, Chowdhury J, Pal T (2009) Dopamine molecules on Aucore-Agshell bimetallic nanocolloids: Fourier transform infrared, Raman, and surface-enhanced Raman spectroscopy study aided by density functional theory. J Phys Chem C 113:6989–7002. https://doi.org/10.1021/jp810210a

    Article  CAS  Google Scholar 

  30. Jha O, Yadav TK, Yadav RA (2018) Structural and vibrational study of a neurotransmitter molecule: dopamine [4-(2-aminoethyl) benzene-1,2-diol]. Spectrochim Acta A 189:473–484. https://doi.org/10.1016/j.saa.2017.07.067

    Article  CAS  Google Scholar 

  31. Shen J, Sun CM, Wu X (2017) Silver nanoprisms-based Tb(III) fluorescence sensor for highly selective detection of dopamine. Talanta 165:369–376. https://doi.org/10.1016/j.talanta.2016.12.073

    Article  CAS  PubMed  Google Scholar 

  32. Corona-Avendaño S, Alarcón-Angeles G, Rosquete-Pina GA, Rojas-Hernández A, Gutierrez A, Ramírez-Silva MT, Romero-Romo M, Palomar-Pardavé M (2007) New insights on the nature of the chemical species involved during the process of dopamine deprotonation in aqueous solution: theoretical and experimental study. J Phys Chem B 111:1640–1647. https://doi.org/10.1021/jp0637227

    Article  CAS  PubMed  Google Scholar 

  33. Bu YR, Lee SW (2012) Influence of dopamine concentration and surface coverage of au shell on the optical properties of Au, Ag, and AgcoreAushell nanoparticles. ACS Appl Mater Interfaces 4:3923−3931–3923−3931. https://doi.org/10.1021/am300750s

    Article  CAS  Google Scholar 

  34. Chen XY, Goff GS, Ewing WC, Scott BL, Runde W (2012) Solid-state and solution-state coordination chemistry of lanthanide (III) complexes with α-hydroxyisobutyric acid. Inorg Chem 51:13254–13263. https://doi.org/10.1021/ic301775d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 21545001), Shandong Provincial Natural Science Foundation, China (No. ZR2018MB031) and Fundation of Logistics University of PVP (No. WHJ201601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Wu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 6.81 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Yuan, F., Li, H. et al. A specific fluorescent nanoprobe for dopamine based on the synergistic action of citrate and gold nanoparticles on Tb(III) luminescence. Microchim Acta 185, 317 (2018). https://doi.org/10.1007/s00604-018-2844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2844-0

Keywords

Navigation